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Chapter 1

Dynamic models in economics

In this chapter we introduce the distinction between static and dy-
namic models in economics. The concepts are explained with the aid
of the standard model of supply and demand in a single market. Static
models are of most relevance when the speed of adjustment is so fast
that market disequilibria are corrected with only negligible time lags.
Dynamic models become necessary when adjustment lags cannot be ig-
nored without significant loss of relevance for the economic phenomena
that we want to understand and analyze. Despite these differences, sta-
tic and dynamic models are related in two important respects: First,
a static relationship can be seen as a limiting case of a dynamic rela-
tionship. Second, static equations can be used to analyze the stationary
state of a dynamic system. Dynamic analysis is simplified by formulat-
ing separate models for the short-run and for the long-run equilibrium,
and this methodology is also introduced in this chapter. Another impor-
tant conceptual distinction, namely between stock and flow variables, is
explained at the end of the chapter.

1.1 Introduction

In many areas of economics time plays an important role: firms and households do
not react instantly to changes in for example taxes, wages and business prospects.
One source of adjustment lags are found in information lags: It usually takes time
before changes in economic circumstances are recognized or reported statistically,
so that adaptive action is taken by households, firms and the government. Another
source of time lags is that fast and full adjustment may be more costly, or induce
larger risk, than moderate and partial adjustment.

Economic activity is influenced by social norms, and markets function within
a framework defined by institutions and by legislation. Often, these wider institu-
tional aspects help explain why gradual adjustment is typical of economic behav-
iour. Annual collective wage bargaining is an example of such an institution, which

1



2 CHAPTER 1. DYNAMIC MODELS IN ECONOMICS

helps explain the relatively smooth development of the average wage level in many
economies. The manufacturing of goods is not instantaneous but takes consider-
able time, even years in the case of projects with huge capital investment. Finally,
dynamic behaviour is also induced by the fact that many economic decisions are
influenced by what firms, households and the government believe about the future.
Often expectation formation will attribute a large weight to past developments, since
rational anticipations usually build on experience.

Economic dynamics often take the form of delayed reactions to changes in eco-
nomic incentives, this delay is not the defining characteristic of dynamics. Instan-
taneous changes, which takes place in the same time period as the shock occurs, is
often part of a dynamic process.. A classic example, which we shall study in some
detail in the next section, is the case of a single market characterized by perfect
competition. A demand shift in such a market will lead to an immediate change in
the (market clearing) price.

The hallmark of dynamic adjustments therefore, is not that the response to a
shock is necessarily delayed, but that the adjustment process takes several time
periods. The effects of shock literary ‘spill over’ to the following periods. Using
the terminology of Ragnar Frisch, who formalized macrodynamics as a discipline,
we can speak of impulses to the macroeconomic system which are propagated by
the system’s own mechanism into effects that lasts for several periods after the
occurrence of the shock.1

Because dynamic behaviour is an important feature of the real world macroecon-
omy, serious policy analysis requires a dynamic approach. Hence, those responsible
for fiscal and monetary policy use dynamic models as an aid in their decision process.
In recent years, monetary policy has come to play an important role in activity reg-
ulation, and the central banks in many countries have defined the rate of inflation as
the target variable of economic policy. The instrument of monetary policy nowadays
is the central bank sight deposit rate, i.e., the interest rate on banks’ deposits in the
central bank. It is interesting to note that no central bank believe in an immediate
and strong effect on the rate of inflation after a change in their interest rate. Rather,
because of the many dynamic effects triggered by a change in the interest rate, cen-
tral banks prepare themselves to wait a substantial amount of time before the effect
of the interest rate has a noticeable impact on inflation. The following statement
from Norges Bank [The Norwegian Central Bank] represent a typical central bank
view:

Monetary policy influences the economy with long and variable lags.
Norges Bank sets the interest rate with a view to stabilizing inflation at
the target within a reasonable time horizon, normally 1-3 years.2

1One of Frisch’s many influential publications is called Propagation Problems and Impulse Prob-
lems in Dynamic Economics, Frisch (1933).

2See Norges Bank’s web page on monetary policy: http://www.norges-
bank.no/english/monetary_policy/in_norway.html.
Similar formulations can be found on the web pages of the central banks in e.g., Autralia, New-
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We continue this chapter by giving the classic definition of static and dynamic
models, which is due to Ragnar Frisch (1929,1992).3 In section 1.2 we apply Frisch’s
concepts to an equilibrium model of a single product market. Section 1.3 and 1.4
discuss the choice between a static and dynamic approach in macroeconomics and
we introduce the central distinction between a model for the short-run and model
for the long-run. Section 1.5 mentions some of the milestones in the development of
macrodynamics, and where they appear in this text. Finally, section 1.6 introduces
another conceptual distinction, namely between stock and flow variables, which plays
an important role in macrodynamics, while section 1.7 gives a summary of main
points and sketches the road ahead.

1.2 Statics and dynamics in economic analysis

The above examples already rationalize that dynamic behaviour by economic agents,
and dynamic responses in economic systems, are typical features that we want to
be able to model. As a first step we need to establish definitions of both static and
dynamic models.

At a general level, static models are used to describe, or to predict, relationship
between state variables, while dynamic models are used to describe, or predict, the
relationships between variables which are in motion. Hence, in the terminology
invented by Ragnar Frisch, we may talk about state laws (or static law) and laws of
motion (dynamic laws) as synonyms for static and dynamic relationships.

Frisch also formulated a simple and operational definition of dynamics. A dy-
namic theory, or model, is made up of relationships between variables that refer to
different time periods. Conversely, when all the variables included in the theory refer
to the same time period (or, more generally, the model is conceptualized without
time as an entity), the system of relationships is static.4 Hence, a genuinely dynamic
model is not obtained by simply adding subscripts for time period to the variables
of an essentially timeless relationship. The defining characteristic of dynamic theory
is that one and the same equation (often as part of a system of equations) contains
entities that refer to different time periods.

Following convention, we will use the subscript t as an index for time period. To
provide a simple example of the differences between static and dynamic relationships
we consider a partial equilibrium model. Let Pt denote the price prevailing in a single
market in time period t, and let Xt denote the demand of a good in period t. A

Zealand, The United Kingdom and Sweden.
The quotation stems from the summer of 2004 (and has been unchanged since then). Before that

the corresponding passage read:
“A substantial share of the effects on inflation of an interest rate change will occur within two

years. Two years is therefore a reasonable time horizon for achieving the inflation target of 2 1
2
per

cent”.
3Frisch (1992) is an English translation of (parts of) Frisch (1929). An edited version of Frisch

(1929) is available in Norwegian in Frisch (1995, Ch 11).
4This definition is adopted directly from Frisch (1947, p. 71).
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static demand function, which is also linear for simplicity, using Frisch’s definition,
is then

Xt = aPt + b+ εd,t, (1.1)

with a and b, as parameters. Since the parameter a is the derivative with respect to
price, we assume that it is a negative number, a < 0. Below, when we draw graphs
of the demand function, the intercept b, is assumed to be positive, b > 0.

The greek letter εd,t denotes a random term, and it serves as a reminder that
economic laws are not deterministic, but instead are laws that “hold on average”.
Hence, we interpret εd,t as an shock variable, or a disturbance term, which is small
in magnitude and which has zero as its average value. Since the disturbance εd,t
takes an arbitrary value, there is in a sense a whole score of demand curves defined
by (1.1), each corresponding to different intersection points along a vertical “Pt-
axis”. However, when we set εd,t equal to its average value of zero, we can represent
the relationship between price and demand by the usual downward sloping demand
curve, as illustrated in figure 1.1.

Next, assume that the supply function is given by

Xt = cPt + d+ εs,t, (1.2)

where c > 0 is the derivative of supply (also denoted by Xt) with respect to price.
The intercept d can be positive or negative, but when we draw graphs we let d < b
(and b > 0 as just noted). The disturbance εs,t represents random shocks to the
supply-side of the market. The average value of εs,t is also assumed to be zero.

The two equations represent a static model with the two endogenous variables,
Xt and Pt. The two exogenous variables are εd,t and εs,t. As usual, we can analyze
the market equilibrium with the aid of a graphs which show the demand and supply
functions as curves. However, because we have included the random shock terms
εd,t and εs,t in the model, care must be taken when we draw the demand and supply
curves.

Figure 1.1 shows an example. The demand and supply curves drawn with solid
and thick lines refer to the case where both εd,t and εs,t take their average values of
zero. In line with the conventional analysis, we assume that the initial situation is
represented by point A in the figure, where there are no shocks, and the system is
“at rest”. The values {P0,X0}, associated with point A, therefore denotes the initial
equilibrium values of price and quantity.

We next consider the response of the endogenous variables in the case of a shock
to the market. Assume that there is a negative supply shock, in period t = 1, so
instead of zero we have εs,1 < 0. Graphically, we represent the supply shock by a
negative horizontal shift of the supply curve (the same as a positive vertical shift),
which is shown as the dashed supply curve in the graph.

The new equilibrium predicted by our theory will be at point B, where the dashed
supply curve intersects the demand curve (which remains at its average position).
Note that the whole effect of the shock is reflected in the new equilibrium values
of P and X in period 1. In other words, there are no effects of the period 1 shock
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Supply curve (average position)Demand curve
(average position)

P
t

Xt

A

B

X0

P0

C

P1

X1

D

Figure 1.1: A static marked equilibrium model. (Average postion refers to the case
where all shocks are set to zero)

that ‘spill over’ to period 2, 3, or to any later periods. There is no propagation of
impulses from the period of the shock to any of the following periods. Despite the
time subscripts of the variables, time does not play an essential role in the model
consisting of equation (1.1) and (1.2).

So far in this example, we have considered a single shock to the supply side of
the market. Sometimes joint shocks occur on the two sides of the market. Whether
there is a simple or joint shock makes no difference to how fast P and X react, only
by how much they change compared to the initial situation. In figure 1.1, point
C represents the case of a joint shock in period 1, where a positive demand shock
occurs simultaneously with the negative supply shock. In this case, both P1 and X1

will be higher than in the case of single supply shock in period 1. Also in this case,
the adjustments of price and quantity are complete in the same period as the shock
occurs.

It follows that in this model, the development of price and quantity from one
period top the next will be wholly determined by the shocks that occur in each time
period. For example, if the single supply shock that moved the equilibrium from
A to B in period 1 is followed by εd,2 > 0 and εs,2 = 0 in period 2, the market
equilibrium in period 2 will be at point D. In period 3, if it should happen that
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Figure 1.2: Panel a) The equilibrium marked price (thicker line) and sequence of
net demand shocks (thinner line) of the static model defined by equation (1.1) and
(1.2). Panel b) shows the sequence of dynamic multipliers (for price) from of this
model, from a single demand shock. Panel c) and d) are the corresponding graphs
for the dynamic model given by (1.3) and (1.4)–the so called cobweb model.

εd,3 = εs,3 = 0, the market is back at point A, where it started out from in the
initial period 0. But that would be pure coincidence, and it is more likely that we
will see non-zero values of εd,3 and εs,3 and that the period 3 market equilibrium
will be at some other point, different from A.

If we specify the values of the four parameters of equation (1.1) and (1.2), and
draw random numbers for εd,t and εs,t, it is easy to work out the numerical solution
for Xt and Pt. Panel a) of figure 1.2 shows an example of a sequence of equilibrium
prices Pt over 50 periods, from period 1 to period 50, together with the sequence
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of random shocks that drives the solution.5 There are random supply and demand
shocks in each period, so in the graph we have chosen to show the net demand
shocks: εd,t − εs,t.

Note how closely the graph of the equilibrium price follows the graph of random
shocks. As we have seen, this is because of the static nature of the model, which
implies that the price in any period, for example period 20, reflects the random
“excess demand” of that period. No other stochastic shocks, before or after, influence
the equilibrium price P20 for example.

The underlying model characteristic is therefore that the endogenous variables
of the static mode adjust fully to a shock to the system, within the same period
of the shock. There are no spill-over effects of a shock to the following period, or
to subsequent periods. The graph in panel b) of figure 1.2 is an example of a so
called dynamic multiplier. It shows how the response of an endogenous variable (the
market price in this case) develops over time. In this case, the graph of the dynamic
multiplier simply reflects that it is derived from a static model: the whole response
takes place within the period of the shock, and all the responses are zero in all the
periods after the shock. Dynamic models, where time plays an essential role, will
generate dynamic multipliers which have a much more interesting shape. So let us
consider genuine dynamics!

As a first example of a dynamic model, we keep the demand equation (1.1):

Xt = aPt + b+ εd,t, (1.3)

but the supply function (1.2) is replaced by

Xt = cPt−1 + d+ εs,t (1.4)

with parameter c > 0. In terms of economic interpretation, equation (1.4) may
represent a case of important production and delivery lags, so that today’s supply
depends of the price obtained in the previous period. The classic example is from
agricultural economics, where the whole supply, for example of pork or of wheat,
is replenished from one year to the next.6 Another interpretation, see Evans and
Honkapoja (2001), which captures that the underlying behaviour of suppliers may
be influenced by expectations, starts from

Xt = cP e
t + d+ εs,t

where P e
t denotes the expected price in period t, as in the so-called Lucas supply

function, see Lucas (1976). If we assume that information about period t is either
5 In this book we often use figures with multiple graphs, such as Figure 1.2. In the text, we refer

to the panels as a), b) etc, according to the rule

a b
c d

for a 2× 2 figure. In the case of a 3× 3 figure for example, c) denotes the third panel of the first
row, while e) is the third panel of the second row.

6Named by Niclas Kaldor, cf. Kaldor (1934).
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unavailable, or is very unreliable in period t − 1, when expectations are formed,
suppliers have to set P e

t = Pt−1, and we retrieve the dynamic supply function (1.4).
Clearly, using Frisch’s definition, equation (1.4) qualifies as a dynamic model of

the supplied quantity since “one and the same equation contains entities that refer
to different time periods”, namely Xt and Pt−1. What about the model as a whole,
i.e., the system given by the static equation (1.3) and the dynamic equation (1.4)?
Is this a static or dynamic system? To answer this question we consider figure 1.3.

In figure 1.3, the line of the demand curve has the same interpretation as in the
static model in figure 1.1. However, care must taken when interpreting the supply
curve. To understand why, consider the quantity supplied in period t = 1, assuming
that t = 0 represents the initial situation with εs,0 = 0. According to (1.4), supply
is given by

X1 = cP0 + d,

since supply in period 1 is a function of P0 which is already determined (from
history), and not the price in period 1. The supply in period 1, which we can call
short-run supply, is therefore completely inelastic with respect to the price, P1.

Unlike figure 1.1, where the supply curve represents the short-run response of
supply with respect to a price change, the positively sloped supply schedule in figure
1.3 therefore refers to a different type of price variation. This variation is counter-
factual and refers to a hypothetical stationary situation where, εs,t = 0 for all t, and
Pt = Pt−1 = P̄ , and Xt = X̄. It is conventional terminology to use “stationary sit-
uation” and “long-run situation” as synonyms, and accordingly the upward sloping
curve in in figure 1.3 has been dubbed the long-run supply curve. Mathematically
it is defined by:

X̄ = cP̄ + d,

and c is called the long-run derivative of the supply function. It is the increase in
supply that would have resulted if the price had been increased by one unit and had
stayed at that new level forever.

We next turn to the system’s response to a shock. We consider a positive (hori-
zontal) demand shift, represented by the dashed demand schedule in figure 1.3. In
the same way as in the first example, we assume that initially the system is ‘at rest’
at point A, so that {P0,X0} denotes the initial situation. In period 1 the demand
shock (εd,1 > 0) occurs, as indicated. Since short-run supply is completely inelastic,
the market equilibrium in period 1 is at point B, with the market clearing price-
quantity combination {P1,X0}. Note that X1 = X0, since the quantity supplied is
already determined by the price that prevailed in the market in the past period.

In the same way as in the analysis of the static model, we assume that the
demand shock disappears in period 2, so the demand schedule shifts back to its
average position. However, since the price P1 leads to increased supply in period 2,
namely X2 −X1 = c(P1−P0), the period 2 equilibrium is at point C, with price P2
which is lower than the initial price P0. The traded quantity X2 is also different from
the initial value X0, reflecting that the price was high in period 1. Hence, both price
and quantity react dynamically to the demand shock in period 1. The effect of the
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Figure 1.3: A dynamic marked equilibrium model, with inelastic short-run supply–
the cobweb model.

shock ‘spills over’ to the following periods, and the adjustment of the endogenous
variables is incomplete within the period of the shock. These are essential differences
from the static model in figure 1.1, and they represent a classic case of economic
dynamics.

Remember how trivial the change in the model specification seemed at first:
we have only changed the time subscript of the right hand side variable in the
supply function from t to t − 1. Yet, this change affects the interpretation and
behaviour of the model fundamentally, reflecting that in the model made up of
(1.3) and (1.4) time plays an essential role. Note also that dynamics is a system
property: both sides of the market are affected, even though the model is made up
of one static equation (the demand function), and one dynamic equation (the supply
function). This suggests that when we construct larger macroeconomic models which
combine static and dynamic equations, all the endogenous variables are affected by
the dynamics introduced in the form of one or more dynamic equations. In this way,
although there may only be a few dynamic equations in a large system-of-equations,
the dynamic relationships represent a dominant feature.

Panel c) and d) of figure 1.2 offer more insight into the dynamics of the model
with fixed short-run supply. Panel c) can be compared with panel a) and shows that
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because of the dynamics, the evolution of the market price Pt (the thicker line) is
more volatile than the net demand shock. Panel d) can be compared with panel b).
It shows the dynamic multipliers of price with respect to a demand shock in period
1. In this case the sequence of multipliers is much more interesting than in the static
model. In line with the graphical analysis above, the first multiplier (often called
the impact multiplier) is positive, while the second is negative, the third is positive,
and so on. The graphs show however, that the absolute values of the multipliers
are reduced as we move away from period 1 (when the shock occurs), and after 10
periods they become negligible. In figure 1.1 the dynamic response to the shock
can be illustrated by noting that the equilibrium in period 3 will be at point D on
the (average) demand curve, and noting that by joining up the equilibrium points
a cobweb pattern emerges. The web starts at point B and ends at point A, after
several periods of adjustments. The model defined by equation (1.3) and (1.4) has
succinctly been named the cobweb model.

The cobweb model is only one of the many possible types of dynamics that can
occur in a model of equilibrium in a single market. To take a different example,
consider the following two demand and supply equations:

Xt = aPt + b1Xt−1 + b0 + εd,t, and (1.5)

Xt = c0Pt + c1Pt−1 + d+ εs,t. (1.6)

In this model, also the demand function (1.5) is a dynamic equation. The parameter
b1 measures by how much an unit increase in Xt−1 affects demand in period t.
This can be rationalized by habit formation for example, in which case we may set
0 < b1 < 1, i.e., high demand today makes for high demand tomorrow as well, ceteris
paribus. The second modification of the cobweb model is in the supply equation
(1.6): If we assume that the parameter c0 is positive, we relax the assumption about
completely inelastic short-run supply that characterized the cobweb model.

In the same way that we drew a distinction between the short-run and the long-
run supply equation in the cobweb model, we can now define short-run and long-run
version of both schedules. The coefficient a is now interpreted as the slope coefficient
of the short-run demand curve. Formally, the short-run slope coefficient is the partial
derivative Xt with respect to Pt:

∂Xt/∂Pt = a

The long-run demand schedule is defined for the hypothetical stationary situation
where Xt = Xt−1 = X̄, and Pt = P̄ . The slope coefficient of the long-run demand
function is defined by

∂X̄

∂P̄
= a+ b1

∂X̄

∂P̄
,

since in the long-run, all values of Xt are affected by a lasting change in the price.
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Figure 1.4: Panel a). The equilibrium marked price (solid line) and sequence of net
demand shock (dashed line) of the dynamic model defined by equation (1.5) and
(1.6). Panel b) shows the dynamic multipliers of that model, from a single demand
shock. Panel c) and d) are identical to panel a) and b) of figure 1.2

Solving for the derivative ∂X̄/∂P̄ , we obtain

∂X̄

∂P̄
=

a

1− b1
.

Since we assume that 0 < b1 < 1, it is clear that the slope of the long-run demand
schedule is less steep than the short-run schedule. In the interpretation that we
adopted above, this is due to habit formation. In the short-run, demand is relatively
inelastic because households have become accustomed to a certain consumption level.
However, if the price change persists, consumption habits will adapt and demand is
therefore more elastic in the long-run than in the short-run.

As noted above, equation (1.6) is a generalization of the supply function of the
cobweb model. In this case, if both c0 and c1 are positive parameters, the short-run
supply schedule is not completely inelastic as in the cobweb model, although the
slope of the short-run supply schedule is still steeper than the long-run schedule.
One interpretation might be that there is some scope for transferring supply from
one period to the next (or maybe to bring in supplies form a neighbouring district).
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Figure 1.4, panel a) and b), illustrate the properties of model (1.5) and (1.6).
Note that the market price Pt, shown as the thicker line on panel a), is more per-
sistent than the net demand shock. The difference from the price behaviour of the
cobweb model, which is repeated in panel c) for comparison, is striking. The in-
terpretation is that in the model consisting of equation (1.5) and (1.6), a shock
to demand in any given period is propagated into a demand increase (i.e. also at
a given price), because of the habit formation effect. For this reason, the market
clearing price has a tendency to stay high (or low) for a longer period of time than
in the cobweb model. Propagation is in this sense stronger than in the pure cobweb
model.

Panel d) shows how the same propagation mechanism leaves its mark on the
dynamic multiplier. After a shock to demand there is a positive first multiplier, and
unlike the cobweb model, the whole sequence of subsequent multipliers are positive
for this model. The equilibrium price increases after a shock, and is then reduced
gradually back to the initial equilibrium level. The dynamic adjustment is therefore
smoother than in the previous model, and it is also more long-lasting. In panel b) of
figure 1.4 there is still some effect left of the initial demand shock after 10 periods,
while the adjustment is practically speaking complete in panel d), which is repeated
from the cobweb model.

Box 1.1 (Continuous and discrete time) Economic dynamic
models are formulated in either continuous time or discrete time.
Which one is used is a matter of convenience. In this book we use
discrete time to keep the theory close to real world data. Consider the
continuous time theoretical relationship:

ẏ = ay(t) + ε(t), a < 0, (1.7)

where y(t) and ε(t)denote variables that are continuous functions of
time, t. The left hand side variable ẏ is the derivative of y with respect
to time. a is a parameter. Time plays an essential role in model
(1.7): If there is an increase in ε(t), ẏ will be larger, and through time
there will also be an increase in y. The corresponding formulation for
discrete time is:

yt = αyt−1 + εt, α > 0,

or
yt − yt−1 = (α− 1)yt−1 + εt, α > 0, (1.8)

to make the correspondence even clearer. In (1.8),yt−yt−1 corresponds
to ẏ in (1.7), and (α− 1) corresponds to a.
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1.3 When is a dynamic approach “required”?

We have seen that in a static model the full effect of a shock on the endogenous
variables is reached in the same time period as the shock. In dynamic models,
the endogenous variables’ responses to shocks are not instantaneous, and dynamic
systems may take several periods to adjust to a shock in period t. The exact shapes
of the responses, which we dubbed dynamic multipliers above, depend on the details
of the model specification, and on which values we give to the parameters of the
model. In the cobweb model, the multipliers were a oscillating sequence, while in
the model with habit formation, the multipliers (all positive) fell monotonically with
time. In the next chapter we will give more examples of dynamic multipliers, both
from theoretical models and from models that have been fitted to real world data,
and we shall learn how the properties of the dynamic multipliers can be analyzed
formally.

With this in mind, it lies close at hand to draw a rather far-reaching conclusion:
in terms of realism, static models are only suited when the speed of adjustment of
the variables are so fast that we can ignore that ‘actually’ there is some time delay
between the impulse (or shock) and the response. To quote Frisch:

Hence it is clear that the static model world is best suited to the type
of phenomena whose mobility (speed of reaction) is in fact so great that
the fact that the transition from one situation to another takes a certain
amount of time can be discarded. If mobility is for some reason dimin-
ished, making it necessary to take into account the speed of reaction,
one has crossed into the realm of dynamic theory.7

The choice between a static and a dynamic analysis will therefore depend on what we
judge to be realistic or typical of the real world phenomenon which is the subject of
our investigation very high speed of reaction to impulses, or more moderate response
time. Hence, somewhat paradoxically, phenomena which in an everyday meaning
of the word are really dynamic, with lots of volatility, as for example stock market
prices, can be analyzed scientifically using a static framework because the speed
of adjustment is so fast in the market. At least, a static model is useful first
approximation–even though further insights almost certainly would be gained if we
managed to formulate a dynamic model of the market. This touches upon another
issue, namely that the choice between a static or dynamic approach is also a matter
of the level of ambition for the analysis. In practice, the choice depends on how much
time (and other resources) that we are willing to spend on our modelling exercise,
and on the purpose of the analysis.

Consider for example the standard Keynesian income-expenditure model. This
is a static model, with many omissions with regard to dynamic adjustments, but
it is nevertheless widely regarded as a relevant model of short-run macroeconomic

7Frisch (1992, p 394), which is an translation of Frisch (1929). A shorthened version of Frisch’s
1929 paper is accessible in Frisch (1995), the quate is from page 153.
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responses to shocks. This relevance explains the strong position that the Keynesian
income-expenditure model continue to hold in macroeconomic teaching, as docu-
mented in the leading textbooks, see e.g., Blanchard (2009) and Birch Sørensen and
Whitta-Jacobsen (2005). There is no contradiction between this view, and at the
time also recognizing that in the longer time perspective (but still within the time
horizon of the policy analysis), the effects that increased spending have on prices
and wages for example need to be analyzed jointly with the immediate GDP effects,
and that a dynamic framework is required for this purpose. One of the goals of this
course is to extend the standard analysis of fiscal and monetary policy analysis into
the realm of dynamic theory.

Of course, dynamic analysis is central in the theory of economics of growth, and
economics students often first encounter dynamic models in a course in growth the-
ory, specifically, the Solow model is the standard analytical framework, see Chapter
2.8.3 below. This may have had the side-effect that students come to regard dy-
namic models as only relevant for growth economics and other long-term issues with
a time horizon of perhaps several decades. This is unfortunate, since, as we have,
seen a dynamic approach may give many relevant insights also for analysis with a
time horizon of (say) 1-5 years.

It is typical for the development of economics, and for its use as an aid to policy
formulations, that competence in the analysis of dynamic models is in increasing de-
mand by central banks, ministries of finance, international organizations and others
whose responsibility (or business) it is to do macroeconomic analysis over a horizon
of 1 to 5 years, which economists customarily refer to as the medium run.

1.4 The distinction between a short-run model and a
long-run model

In addition to their role as partial and approximate representations of real world
economic behaviour, static models play another and quite different role in macroeco-
nomic analysis:Static equations express what the dynamic model would correspond
to in a counterfactual situation where no shocks, impulses or changes in incentives
occurred. As we become accustomed to dynamic analysis, we will refer to this cor-
respondence by saying that static relationships can represent the stationary state
(or the steady state) of a dynamic model. We will also, when no misunderstanding
are likely to occur, follow custom and use the terms stationary (or steady state)
equation interchangeably with the term long-run equation.

It is of some importance to understand that according to this definition, the
concept of the long-run is a relative concept. What is meant by the long-run depends
on the properties of the model that we use to analyze the real-life phenomenon. The
long-run therefore refers to the length of the adjustment period after a shock, from
an initial stationary situation, to a new stationary situation is reach after all the
effects of the shock have worked their way through and “out of” the model. In the
cobweb model example above, the long-run seemed to be approximately 2 years, i.e.,
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Table 1.1: Short-run and long-run multipliers of the dynamic model given by equa-
tion (1.9) and (1.10).

Demand shock Supply shock
temp. perm. temp. perm.

short-run derivative

Price
∂Pt
∂εi,t

1

c0 − a

1

c0 − a

−1
c0 − a

−1
c0 − a

Quantity
∂Xt

∂εi,t
1 +

a

c0 − a
1 +

a

c0 − a

−a
c0 − a

−a
c0 − a

long-run

Price
∂P̄

∂ε̄i
0

1
(1−b1)
κ

0
−1
κ

Quantity
∂X̄

∂ε̄i
0

c0+c1
(1−b1)
κ

0

−a
(1−b1)
κ

Note: κ = (c0 + c1)− a
1−b1 > 0

if the time subscript is taken to denote quarterly observations of the variables Xt

and Pt. In a model of economic growth, the long-run will refer to a much longer
calender time period, probably decades.

We use the last model in section 1.2 to develop this idea somewhat further, as a
preparation to the central role that the distinction between the short-run model and
the long-run model will have in the analysis of dynamic macroeconomic systems.

In order to recapitulate, the model consisted of the following two equations:

Xt = aPt + b1Xt−1 + b0 + εd,t, (demand) (1.9)

Xt = c0Pt + c1Pt−1 + d+ εs,t, (supply). (1.10)

The endogenous variables are Xt and Pt. The parameters of this model are; a,
b0, b1, c0, c1 and d. As explained above, we assume a < 0, 0 < b1 < 1, c0 ≥ 0,
c1 > 0. The assumptions about the intercepts are of less economic importance, but
in line with what we have used before, we set b0 > 0 and d < b0.

The exogenous variables of the model are Xt−1, Pt−1, εd,t and εs,t. Xt−1 and
Pt−1 are the lagged variables of the endogenous variables, and are often referred to
as the predetermined variables of the model. εd,t and εs,t are interpreted as random
disturbance, or shocks. We have not included other economic exogenous variables
in the models in this section, but later in the book such variables will usually be
included because they have a relevant economic interpretation. Hence, if the model
was to be applied to a real-world market, it would be reasonable to include for
example total consumption expenditure as an exogenous variable in the demand
function, and perhaps rainfall or in the supply function.

In figure 1.4, panel a) we saw an example of the solution of the dynamic model
(1.9)-(1.10), for the endogenous variable Pt. Panel b) of figure 1.4 shows the full
dynamic response of Pt to a shock that occurs in period 1. Formally the graph shows
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Figure 1.5: Graphical analysis of a demand shock in the model given by equation
(1.9) and (1.10)

the sequence of derivatives ∂Pj/∂εd,1, for j = 1, 2, 3, ..., which, as we have learned,
are called the dynamic multipliers.

The full mathematical theory of dynamic systems is beyond the scope of this
book,but we note that it is in general feasible to solve quite complicated dynamic
models.8 However, once we move beyond models with two endogenous variables,
and one lag, it becomes practical to use computer simulation to find the solution, as
explained in chapter 2.7.2. Nevertheless, even when we are unable to derive the full
solution of a given dynamic model ‘by hand’ so to say, and do not have access to a
computer, we will still be able to answer the following two important questions:

1. What are the short-run effect of a change in an exogenous variable?

8This is true without qualifications for dynamic systems that are linear (in parameters) and which
have a certain property of no charateristic roots outside the unit-circle. The models we consider in
this book are of that type, with the exception of chapter 3. For non-linear systems, most analysis
is based on a mathematical theorem saying that local stability of non-linear systems can be studied
by using a linear approximation of the non-linear system, see Rødseth (2000, Appendix A) for a
short and concise introduction. In this book, we show an example of linearization in the review of
the Solow growth model in chapter 2.8.3.
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2. What are the long-run effects of the shocks.9

The technique we will use to answer these questions is based on the distinction
between the short-run model given by (1.9) and (1.10), and the long-run model
which is defined for the stationary situation of Xt = Xt−1 = X̄, Pt = Pt−1 = P̄ and
εd,t = ε̄d, εs,t = ε̄s. Hence the long-run model in this example is given by:

X̄ =
a

1− b1
P̄ +

b0
1− b1

+
1

1− b1
ε̄d, (1.11)

X̄ = (c0 + c1)P̄ + d+ ε̄s (1.12)

where (1.11) is the long-run demand schedule, and (1.12) is the long-run supply
schedule. Together they form a model of a hypothetical stationary situation in
which there are no new shock, and all past shocks have worked their way through
(and “out of”) the system.

There are two polar classes of shocks to consider from the outset: temporary
shocks and permanent shocks. A temporary shock, as we have defined it above,
lasts only one period and then vanishes. A permanent shock last for an infinitely
long period of time. Hence the short-run multipliers, also often called the impact
multiplier, are found as ∂Pt/∂εi,t and ∂Xt/∂εi,t (i = d, s) from the short-run model
(1.9)-(1.10). The long-run multipliers ∂P̄/∂ε̄i and ∂X̄/∂ε̄i (i = d, s) are found as
the derivatives of the long-run model (1.11)-(1.12).

Table 1.1 summarizes the expressions for the multipliers, and figure 1.5 shows
the graphical analysis. As we have explained earlier in the chapter, it is custom
to assume that the initial situation is a stationary situation, represented by the
intersection point A between the long-run demand curve and the long-run supply
curve. Note that the slopes of the short-run curves are steeper than their long-
run counterparts, reflecting that both demand and supply are more elastic in the
long-run than in the short-run.

The lines in figure 1.5 have been draw to illustrate the short-term and long-
term effects of a shock to demand. For example, if the demand shock is permanent,
the new long-run stationary state is C where the dashed “new” long-run demand
curve intersects with the long-run supply curve. Compared to the old equilibrium,
both P̄ and X̄ have increased. What about the short-run effect? To answer that
question, we simply draw a positive horizontal shift in the short-run demand curve,
but note carefully that for a given price, the horizontal shift in the short-run curve
is smaller than for the long-run demand curve. This is because Xt−1 is exogenous
(predetermined) in the short-run model. Hence the new short-run equilibrium, in
the period of the shock, is given by point B in the figure.

So far we have assumed that the demand shock is permanent. In the case of a
temporal shock the graphical analysis is very simple: the short-run effect is given
by point B, and there are no long-run effects, so the market equilibrium moves back
to point A after the effects of the temporary shocks have died out.

9 In advanced courses in economic dynamics the analysis is often done in terms of so called
phase-diagrams, see Rødseth (2000), and Obstfeldt and Rogoff (1998), for example Chapter 2.5.2.2.
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1.5 Some milestones in the development of dynamic
macroeconomics

The motivation for the development of macrodynamics hinges on the basic rationale
given by Frisch, namely that “in real life both inertia and friction act as a brake on
speed of reaction”.10 Frisch also noted that

The static theory’s assumption regarding an infinitely great speed
of reaction contains one of the most important sources of discrepancy
between theory and experience.11

Therefore Frisch anticipated the increased use of dynamics in economics–it would
increase the degree of realism and scope of macroeconomic analysis. Frisch was
not alone (for long). It seems that dynamics was “in the air” between the two
worlds wars. Frisch published his seminal article called Propagation Problems and
Impulse Problems in Dynamic Economics in 1933, and the Dutch econometrician
Jan Tinbergen developed the first macroeconometric models of the business cycle.12

Econometricians have continued to play an important role in the development of dy-
namic economics, and the field developed particularly quickly in the 1980s and 1990s.
Later in the book we will introduce the concept of error correction (which we will
learn to treat synonymously with equilibrium correction) which was coined by the
British econometrician Denis Sargan, and which is central to the modern discipline
of dynamic econometrics, as documented in Hendry (1995). From another angle, the
research programme initiated by Finn Kydland and Edvard Prescott (1982) , and
which utilizes relationships that have been derived from microeconomic theory to
model representative macro agents, have become standard in macroeconomic the-
ory. This research started by combining lags in the evolution of physical capital with
random technology shocks, and the result was a dynamic macroeconomic model that
was dubbed the real business cycle (RBC) model. A simple RBC model is presented
in chapter 2.8.4.

The RBC model can also be seen as a application of Solow’s growth model
to a shorter time period that was originally intended. Recently, there has been
further development in that direction in the form of micro based dynamic macro
model knows as DSGE models (Dynamic Stochastic General Equilibrium models).
In chapter 3 we present one of the key elements of DSGE models, namely the model
of the supply side called the New Keynesian Phillips curve, in chapter 3.6 below.

10Frisch (1992, p 395).
11Frisch (1992, p 395).
12Tinbergen’s models were commissioned by the League of Nations, and they triggered the first big

metodenstreit that involved econometrics as a dicipline. Keynes was deeply critical, and Frisch had
his own distinct views, see Frisch (1938). Trygve Haavelmo belonged to a group of econometricans
who were positive to Tinbergens pathbreaking work, cf. Haavelmo (1943). For those interested in
the formative years of dynamic economics and econometrics, the book by Morgan (1990) gives an
excellent vantage point.
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1.6 Stock and flow variables

In macroeconomics there is an important conceptual distinction between flow and
stock variables. Examples of flow variables are GDP and its expenditure compo-
nents, hours worked and inflation. Flow variables are measured in for example
million kroner, or thousand hours worked, per year (or quarter, or month). Infla-
tion is measured as a rate, or percentage, per time period and is another example
of a flow variable. Values of stock variables, in contrast, refer to particular points
in time. For example, statistical numbers for national debt often refer to the end of
the year.

Price indices are also examples of stock variables. They represent the cost of
buying a basket of goods with reference to a particular time period. The annual
consumption price index, CPI for short, is a stock variable which is obtained as the
average of the 12 monthly indices (each being a stock variable).

For example Pt may represent the value of the Norwegian CPI in period t (a
month, a quarter or a year). As you probably will know from before, the values of P
will be index numbers. The number 100 (often 1 is used instead) refers to the base
period of the index. If Pt > 100 the overall price level is higher in period t than in
the base year–there has been a period of inflation.

Starting from a stock variable like Pt, flow variables can be obtained by calcu-
lating (some sort of) difference between Pt and Pt−1. For example

xt = Pt − Pt−1, the (absolute) change

yt =
Pt − Pt−1

Pt−1
, the relative change, and

zt = lnPt − lnPt−1 the approximate relative change

are all flow variables derived from the stock variable Pt. Note that:

• yt× 100 is inflation in percentage points. In this book we will often use to the
rate formulation , hence we omit the scaling by 100.

• zt ≈ yt by the properties of the (natural) logarithmic function, see for example
the appendix A if you are in doubt.

A typical empirical trait of stock variables is that they change gradually, as a sum-
mation of often quite small growth rates. Occasionally however, a stock variable
jumps from one level in period t to another level in period t + 1. In theory, with
continuous time, see Box 1.1 below, the derivative of the variable with respect to
time is infinite at the time of the jump. In practice, with discrete time data, the
rate of change becomes relatively large in such instances. In the Norwegian “price
history” the high rate of change in the consumer price index at the time of the
breakdown of the union with Denmark may be regarded an empirical example of
jump behaviour in the price level, since the annual rate of inflation increased from
approximately 25% to 150%, see figure 1.6, panel a) and c). From panel b) and
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Figure 1.6: Panel a) and b): consumer price indices (stock variables) in Norway and
the UK . Panel c) and d): the corresponding rates of change (flow). Annual data
1750-1830.

d) in figure 1.6 we see that the Revolutionary War (which started in 1789 with the
Storm on the Bastille) and the Napoleonic wars caused abrupt changes in the CPI
in the United Kingdom, compared to the relatively low inflation rates in the late
eighteenth century.

In economic theory, when stock variables change gradually, we use explicit dy-
namic models to account for their evolution. Sometimes though, stock variables can
be treated theoretically as if they are jump-variables. This is the case of practically
infinitively sharp reaction speed which we discussed above, as a condition for giving
a dynamic interpretation to a static model. An example of such an approach is the
portfolio model for the market for foreign exchange market. In this model, the equi-
librium nominal exchange rate is determined by the supply and demand functions
for the whole stock of foreign currency, which in a liberalized market is subject to
complete and immediate change, over-night, practically speaking. Hence, because
the speed of adjustment in the market is so fast, the model of market equilibrium
can be given a static specification, at least as a first approximation, see chapter
2.4.3.

One reason for paying attention to the distinction between stock and flow vari-
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Figure 1.7: The Norwegian current account (upper panel) and net foreign deb (lower
panel)t. Quarterly data 1980(1)-2003(4)

ables is that macroeconomic dynamics often arise from the combination of stock and
flow variables As one example, consider a nation’s net foreign debt FDt, evaluated
at the end of period t. In principle, the dynamic behaviour of debt (a stock) is linked
to the value of the current account (flow) in the following way:

FDt = −CAt + FDt−1 + cort.

Hence if the current account, CAt, is zero over the period, and if there are corrections
of the debt value (typically due to financial transactions), this period’s net foreign
debt will be equal to last period’s debt. However, if there is a current account
surplus for some time, this will lead to a gradual reduction of debt–or an increase
in the nation’s net wealth. Conversely, a consistent current account deficit raises a
nation’s debt.13

Figure 1.7 shows the development of the Norwegian current account and of Nor-
wegian foreign deb. At the start of the period, Norway’s net debt (a stock variable)
was hovering at around 100 billion, despite a current account surplus (albeit small)
in the early 1980s. Evidently, there was a substantial debt stemming from the 1970s
which the nation’s net financial saving (a flow) had not yet been able to wipe out.
In the period 1986-1989 the current account surplus changed to a deficit, and, as one
would expect from the “debt equation” above, Noway’s debt increased again until

13Se for example Birch Sørensen and Whitta-Jacobsen (2005, Ch 4.1) for a discussion of wealth
accumulation, cf their equation (2) in particular.
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it peaked in 1990. Later in the 1990s, the current account surplus returned, and
therefore the net debt was gradually reduced. Later, at the end of the millennium,
surpluses grew to unprecedented magnitudes, up to 75 billion per quarter, resulting
in a sharp build up of net financial wealth, accumulating to 750 billion kroner at the
end of the period.

Section 2.4.3 discusses the role of the current account in the theory of the market
for foreign exchange, in particular why it is fruitful to distinguish between stock and
flow variables in the analysis of that market.

The theory of economic growth provides another example of the importance of
stock and flow dynamics. For example, the level of production (a flow variable) in the
economy depends on the size of the labour stock (literary speaking), and the capital
stock. Due to the phenomenon of capital depreciation, some of today’s production
needs to be saved just in order to keep the capital stock intact in the first period of
the future. Moreover, due to population growth (and a declining marginal product
of labour), next period’s capital stock will have to be larger than it is today if we
want to avoid that output per capita declines in the next period. Hence, economic
growth in terms of GDP per head requires that the flow of net investment (gross
investment minus capital depreciation) is positive. In line with this, the dynamic
equation of the capital stock is written as

Kt+1 = Kt + Jt −Dt

where Kt denotes the capital stock at the start of period t, Jt is the flow of gross
investment during period t, and Dt is replacement investment (also a flow). A much
used assumption is that Dt is proportional to the pre-existing capital stock, i.e.,
Dt = δKt where the rate of capital depreciation δ is a positive number which is less
than or equal to one. This gives a well known expression for the development of the
capital stock

Kt+1 = (1− δ)Kt + Jt, 0 < δ ≤ 1, (1.13)

which plays an important role in growth theory (see chapter 2.8.3), in real business
cycle theory (see chapter 2.8.4), and generally in all macro models with endogenous
capital accumulation.

Another case of stock-flow dynamics is the relationship between wages and un-
employment, which we will discuss in detail in chapter 3. The rate of unemployment
is a stock variable which influences wage growth (a flow variable) and inflation in
the form of the relative change in CPI.. On the other hand, the rate of unemploy-
ment depends on accumulated wage growth which determines the real wage level (a
stock variable). Similar linkages exist between nominal and real exchange rates, and
provide one of the key dynamic mechanisms in the models of the national economy
that we encounter in macroeconomics.
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1.7 Summary and overview of the rest of the book

The quotation from Norges Bank’s web pages at the beginning of the chapter shows
that the Central Bank has formulated a view about the dynamic effects of a change
in the interest rate on inflation. In the quotation, the Central Bank states that the
effect will take place within two years, i.e., 8 quarters in a quarterly model of the
relationship between the rate of inflation and the rate of interest. That statement
may be taken to mean that the effect is building up gradually over 8 quarters and
then dies away quite quickly, but other interpretations are also possible. In order
to inform the public more fully about its view on the monetary policy transmission
mechanism, the Bank would have to give a more detailed picture of the dynamic
effects of a change in the interest rate. Similar issues arise whenever it is of interest
to study how fast and how strongly an exogenous perturbation or a policy change
affect the economy, for example how private consumption is likely to be affected by
a certain amount of tax-cut.

Chapter 2 is an introduction to the modelling tools of dynamic analysis. Building
on the motivation of this chapter, we present a general framework for dynamic
single equation models, called the autoregressive distributed lag model, or ADL for
short. In terms of mathematics, the ADL model corresponds to linear difference
equations, but we assume no knowledge of the mathematics of difference equations
in this course. Instead, this important model class is motivated by its relevance
for economic dynamics, and by the intuitive economic interpretation of the model’s
parameters.

Having introduced the ADLmodel, we can use that model that model to establish
formally the properties of the dynamic multiplier, which we in fact have come across
several times already in the introduction, for example in the analysis of the cobweb
model. The observant reader may already have gauged that the dynamic multiplier
is a key concept in this course, and once you get a good grip on it, you have a
powerful tool which allows you to calculate the dynamic effects of policy changes
(and of other exogenous shocks for that matter) in a dynamic model. The ADL
model also defines a typology of dynamic equations, as special cases, each with their
distinct features and economic meaning. One particular transformation of the ADL
model is the error correction model, is particularly useful, since it shows explicitly
how dynamic models combines variables that are in terms of changes with respect
to time (differenced data), with the past levels of the variables. Finally in chapter
2, the analysis is extended to simple dynamic systems-of-equations. For both the
single equations and for systems-of-equations, a number of macroeconomic examples
and applications are discussed in details.

In chapter 3 the analytical tools of chapter 2 are applied to wage-and-price set-
ting, which is an essential part of the supply side of modern macroeconomic model.
A main difference from existing textbooks is that our approach rationalizes that the
careful modelling of bargaining based wage setting leads to a representation of the
supply side model which cannot be subsumed in a standard Phillips curve relation-
ship. This changes the premises for stabilization policy as currently perceived. In
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later versions these models of the supply side will be integrated in a model of the
open macroeconomy.

Exercises

1. Consider the model consisting of equation (1.3) and (1.4). Experiment with
different slopes of the demand and (long-run) supply functions, corresponding
to different values of the parameters a and c, and check whether the cobweb
is always “spiraling inwards”. Or can other patterns emerge?

2. In equation (1.4), what it the derivative of supply in period t, Xt, with respect
to price in period t? What is the derivative of Xt+1 with respect to Pt?
Interpret your results in the light of the graph in figure 1.3.

3. In the model defined by equation (1.5) and (1.6), what is the expression for
the slope of the long-run demand curve? What happens to the slope if b = 1,
and can you think of an interpretation of this case?

4. Modify the model in (1.5) and (1.6) by introducing an exogenous variable Zt,
representing total consumption expenditure, in the demand equation. Assume
that initiallyZt is at a constant level z0 in all time periods. Try to illustrate
and explain the effects of a negative expenditure shock that lasts for 2 periods
before Z goes back to z0 and stays there.



Chapter 2

Linear dynamic models

Section 2.1 introduces an important class of dynamic models called
the autoregressive distributed lag model (ADL), and the concept of the
dynamic multiplier, already encountered in the first chapter, is made
precise within that framework. A typology of dynamic equations whith
relevance in macroeconomics is presented in section 2.3, and section 2.4
gives examples of how economic models and hypothesis can be formu-
lated in the framework of the ADL. Section 2.5 and 2.6 show that static
and dynamic equations can be reconciled, and integrated, by the use of
the equilibrium correction model, ECM, which in turn is a “1-1” trans-
formation of the ADL. In section 2.7 we discuss the solution of dynamic
models. Finally, section 2.8 sketches how the analysis can be extended
to multi equation dynamic models (dynamic systems). Two examples of
macroeconomic systems: the Solow growth model and the real business
cycle model, are reviewed in some detail.

2.1 The autoregressive distributed lag model and dy-
namic multipliers

In chapter 1 we gave examples of dynamic relationships, for example the supply
equation of the cobweb model. We also introduced the concept of dynamic multiplier,
which is the dynamic response of an endogenous variable to a shock to the model.
In this section we present a model known as the autoregressive distributed lag model.
It is a single equation model with only first order dynamics – so it is quite simple.
Nevertheless, the model is general enough to allow us to explain all the essential
properties of linear dynamic models in a precise way.

In equation (2.1), yt is the endogenous variable while xt is the exogenous variable:

yt = β0 + β1xt + β2xt−1 + αyt−1 + εt. (2.1)

Since x enters both with its current value, xt, and its lagged value xt−1 is is custom to
say that x enters the equation as a distributed lag. β0 and β1 are the distributed lag
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coefficients. Higher order distributed lags are often used in practical applications,
but for our purpose we loose nothing by concentrating on the simplest case with a
first order distributed lag.

The first lag of yt – called the autoregressive term – also appears on the right
hand of equation (2.1). yt−1 is multiplied by the coefficient α, which is called the
autoregressive coefficient. In the same way as in the first chapter, εt symbolizes
the small and random part of yt which is unexplained by xt, xt−1 and yt−1. It is
common to refer to εt as the shock variable in the dynamic equation. Since the
model combines a distributed lag in the exogenous variable with an autoregressive
term, the name autoregressive distributed lag model (ADL for short) is much used.

In many applications economic, as in the consumption function example below,
y and x are in logarithmic scale. However, in other applications, different units of
measurement are the natural ones to use. Thus, depending of which variables we are
modelling, y and x can be measured in million kroner, or in thousand persons, or
in percentage points. Combinations of measurement are also often used in practice:
for example in studies of labour demand, yt may denote the number of hours worked
in the economy, while xt denotes real wage costs per hour and is therefore measured
in kroner. The measurement scale does not affect the mathematical derivation of
the dynamic multipliers below, but care must be taken when interpreting the re-
sults. Specifically, only when both y and x are in logs, are the multipliers directly
interpretable as percentage changes in y following a 1% increase in x, i.e., they are
(dynamic) elasticities.

We now show that dynamic multipliers correspond to the derivatives of yt, yt+1,
yt+2, ...., with respect to changes in x. We draw a distinction between a temporary
change in x and a permanent change in x. By a temporary change we mean an
increase in x that lasts for only one period – in the following period, x returns
to its initial value and stays there forever. In the case of a permanent change, x
increases to a new level and stays there forever. Since we work with a linear model,
all results that we establish for positive changes applies equally to negative changes,
just by changing the signs of the dynamic effects.

2.1.1 The effects of a temporary change: dynamic multipliers

We first derive the dynamic effects on y of at temporary change in x. These effects
are called dynamic multipliers. By definition, a temporary change in period t affects
only xt, not xt+1 or any other x’s further into the future. Hence from (2.1) we
have directly that the first dynamic multiplier, which it is custom to call the impact
multiplier is

∂yt
∂xt

= β1.

The second dynamic multiplier is found by considering the equation for period t+1,
namely:

yt+1 = β0 + β1xt+1 + β2xt + αyt + εt+1. (2.2)
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The partial derivative of (2.2) with respect to xt is

∂yt+1
∂xt

= β2 + α
∂yt
∂xt

,

and is the second dynamic multiplier. It is often referred to as the interim multiplier
for the first lag. To find the third dynamic multiplier, consider

yt+2 = β0 + β1xt+2 + β2xt+1 + αyt+1 + εt+2, (2.3)

and take the derivative to obtain the interim multiplier for the second lag.

∂yt+2
∂xt

= α
∂yt+1
∂xt

= α2β1 + αβ2.

In general, for period t+ j we have

yt+j = β0 + β1xt+j + β2xt+j−1 + αyt+j−1 + εt+j ,

and the interim multiplier for lag j = 1 is
∂yt+j
∂xt

= α
∂yt+j−1
∂xt

= αjβ1 + αj−1β2, (2.4)

showing that, as long as −1 < α < 1, each dynamic multiplier is smaller in magni-
tude than the previous. The multipliers are therefore zero asymptotically , formally:

∂yt+j
∂xt

−→
j−→∞

0, if and only if − 1 < α < 1. (2.5)

The expressions for the dynamic multipliers are collected in the second column of
table 2.1.

2.1.2 The effects of a permanent change: cumulated interim mul-
tipliers

In economics we often whish to find the effects on y of a permanent change in the
explanatory variable. It is then convenient to think of xt, xt+1, xt+2, , .... as increas-
ing functions of a continuous variable h. When h changes permanently, starting in
period t,we have ∂xt+j/∂h > 0, for j = 0, 1, 2, ..., while there is no change in xt−1
and yt−1 since those two variables are predetermined. Since xt is a function of h, so
is yt, and the effect of yt of the change in h is found as

∂yt
∂h

= β1
∂xt
∂h

.

In the outset, ∂xt/∂h can be any number but because it is convenient, is has become
custom to evaluate the multipliers for the case of ∂xt/∂h = 1 which is referred as
the case of a unit-change. Following this practice, the first multiplier is

∂yt
∂h

= β1. (2.6)



28 CHAPTER 2. LINEAR DYNAMIC MODELS

It should come as no surprise that this is the same as the first multiplier in the case
of a temporary change in x.

The second multiplier associated with a permanent change in x is found using
(2.2) and calculating the derivative ∂yt+1/∂h. Since our premise is that the change
in h occurs in period t, both xt+1 and xt are changed. We need to keep in mind
that yt is a function of h, hence:

∂yt+1
∂h

= β1
∂xt+1
∂h

+ β2
∂xt
∂h

+ α
∂yt
∂h

(2.7)

Again, considering a unit-change, ∂xt/∂h = ∂xt+1/∂h = 1, and using (2.6), the
second multiplier can be written as

∂yt+1
∂h

= β1 + β2 + α
∂yt
∂h

= β1(1 + α) + β2. (2.8)

Using equation (2.3) and the same logic as the second multiplier, we obtain

∂yt+2
∂h

= β1
∂xt+2
∂h

+ β2
∂xt+1
∂h

+ α
∂yt+1
∂h

(2.9)

= β1 + β2 + α
∂yt+1
∂h

= β1(1 + α+ α2) + β2(1 + α)

as the expression for the third multiplier. Note that the conventional unit-change,
∂xt/∂h = ∂xt+1/∂h = 1, has been used in the second line, and the third line is the
result of substituting ∂yt+1/∂h by the right hand side of (2.8).

Comparison of equation (2.7) with the first line of (2.9) shows that there is
a clear pattern: The third and second multipliers are linked by exactly the same
form of dynamics that govern yt itself. This also holds for higher order multipliers,
and means that these multipliers can be computed recursively : For example, once
we have found the third multiplier, the fourth can be found easily by substituting
∂yt+2/∂h on the right hand side of

∂yt+3
∂h

= β1 + β2 + α
∂yt+2
∂h

(2.10)

with the expression in the final line of equation (2.9).
In table 2.1, the column named Permanent unit change in xt collects the results

we have obtained. In the table, to save space, we use the notation δj (j = 0, 1, 2, ...)
for the sequence of multipliers caused by a permanent change in x. For, example δ0
is identical to ∂yt/∂h in (2.6), and δ1 is identical to the second multiplier, ∂yt+1/∂h
in (2.8), and so on. Because the multipliers are linked together in a recursive pattern,
multiplier j + 1 is given by

δj = β1 + β2 + αδj−1, for j = 1, 2, 3, . . . (2.11)
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Table 2.1: Dynamic multipliers of the general autoregressive distributed lag model.

ADL model: yt = β0 + β1xt + β2xt−1 + αyt−1 + εt.

Temporary unit change in x Permanent unit change in xt
1. multiplier: ∂yt

∂xt
= β1 δ0 = β1

2. multiplier: ∂yt+1
∂xt

= β2 + α ∂yt
∂xt

δ1 = β1 + β2 + αδ0

3. multiplier: ∂yt+2
∂xt

= α∂yt+1
∂xt

δ2 = β1 + β2 + αδ1
...

...
...

j+1 multiplier ∂yt+j
∂xt

= α
∂yt+j−1
∂xt

δj = β1 + β2 + αδj−1

long-run 0 δlong−run =
β1+β2
1−α

Moreover, in the same way as in the third line of (2.9) we can write more generally

δj = β1(1 + α+ ...+ αj) + β2(1 + α...+ αj−1) for j = 1, 2, 3, ..., (2.12)

which involves two geometric progressions. Asymptotically, when j −→∞ we know
that subject to the condition −1 < α < 1, the two geometric progressions both
become 1/(1− α). Hence we obtain

δj −→
j−→∞

β1 + β2
1− α

, if and only if − 1 < α < 1, (2.13)

in the case of a permanent change in x. The asymptotic multiplier has a special
name in economics– we call it the long-run multiplier.

In section 2.5 and 2.7, the wider significance of the condition −1 < α < 1 is
explained in the context of the solution of dynamic equations. Presently we note
that if the condition holds, we can obtain the long-run multiplier more directly from
(2.11) by imposing δj = δj−1 = δlong−run and solving for δlong−run:

δj −→
j−→∞

δlong−run =
β1 + β2
1− α

, if and only if − 1 < α < 1. (2.14)

Clearly, if α = 1, this expression does not make sense mathematically, since the
denominator is zero. Economically, it does not make sense either, since the long-
run effect of a permanent unit change in x is an infinitely large increase in y (if
β1+β2 > 0). The case of α = −1, may at first sight seem to be acceptable since the
denominator is 2, not zero. However, as just noted, the infinite geometric progression
that defines the long-run multiplier does not converge in the case of α = −1.

Hence, although can use the expressions in the table to calculate dynamic mul-
tipliers also for the cases where the absolute value of α is equal to or larger than
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unity, the long-run multiplier of a permanent change in x does not exist in this case.
Correspondingly: the multipliers of a temporary change do not converge to zero in
the case where −1 < α < 1 does not hold.

Notice that, unlike α = 1, the case of α = 0 does not represent a problem. This
restriction, which is seen to exclude the autoregressive term yt−1 from the model,
only serves to simplify the dynamic multipliers, and it is referred to by economists
as the distributed lag model, denoted DL-model, as in the equation typology below.

Heuristically, the effect of a permanent change in the x’s can be viewed as the
sum of the changes triggered by a temporary change in period t. Indeed, there is an
algebraic relationship between the interim multipliers and the dynamic multipliers
associated with a permanent change. To see this, note that the 2nd multiplier δ1 in
table 2.1 is

δ1 = β1 + β2 + αβ1

which is the same at the sum of the impact multiplier and the first interim multiplier:

∂yt
∂xt

+
∂yt+1
∂xt

= β1 + β2 + αβ1 = (1 + α)β1 + β2 ≡ δ1

The third dynamic multiplier is the sum of the impact multiplier and the two next
interim multipliers:

∂yt
∂xt

+
∂yt+1
∂xt

+
∂yt+2
∂xt

= β1 + β2 + αβ1 + α(β2 + αβ1)

= (1 + α+ α2)β1 + (1 + α)β2 ≡ δ2

and generally, for the j’th dynamic multiplier:

δj =
Xj

k=0

∂yt+k
∂xt

= (1 + α+ ...+ αj)β1 + (1 + α+ ...+ αj−1)β2, j = 1, 2, ....

In reflection of these algebraic relationships, the dynamic multipliers due to a per-
manent change in the x’s, are often referred to as the cumulated interim multipliers.
Similarly, the long-run multiplier δlong−run can be rationalized as the infinite sum
of the interim multipliers, subject to the condition that −1 < α < 1.

In a way, the interim multipliers associated with a temporary change are the
more fundamental of the two types of dynamic multiplies that we have considered:
If we first calculate the effects of a temporary shock, the dynamic effects of a per-
manent shock can be calculated afterwards by summation of the impact and interim
multipliers.

2.2 An example: dynamic effects of increased income
on consumption

In this section we discuss an empirical example where yt is (the logarithm) of private
consumption, and we consider in detail a dynamic model of consumption where the
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explanatory variable xt is the log of private disposable income. When we consider
economic models to be used in an analysis of real world macro data, care must be
taken to distinguish between static and dynamic models. The textbook consumption
function, i.e., the relationship between real private consumption expenditure (C) and
real households’ disposable income (INC) is an example of a static equation

Ct = f(INCt), f 0 > 0. (2.15)

Consumption in any period t is strictly increasing in income, hence the positive
signed first order derivative f 0 which is called the marginal propensity to consume.
To be able to apply the theory to observations of the real economy we also have
to specify the function f(INCt). Two of the most used functional forms in macro-
economics, are the linear and log-linear specifications. For the case of the static
consumption function in (2.15), these two specifications are

Ct = β0 + β1INCt + et, (linear), and (2.16)

lnCt = β0 + β1 ln INCt + et, (log-linear). (2.17)

For simplicity we use the same symbols for the coefficients in the two equations.
However, it is important to note that since the variables are measured on different
scales–million kroner at fixed prices in (2.16), the natural logarithm of fixed million
kroner in (2.17)–the slope coefficient β1 has a different economic interpretation in
the two models.1

Thus, in equation (2.16), β1 is the marginal propensity to consume and is in
units of million kroner. Mathematically, β1 in (2.16) is the derivative of real private
consumption, Ct with respect to real income, INCt:

dCt

dINCt
= β1, from (2.16).

In the log linear model (2.17), since both real income and real consumption are
transformed by applying the natural logarithm to each variable, it is common to say
that each variable have been “log-transformed”. By taking the differential of the
log-linear consumption function we obtain (see appendix A for a short reference on
logarithms):

dCt

Ct
= β1

dINC

INCt
or

dCt

dINCt

INCt

Ct
= β1.

1 In practice, this means that if LCt is private consumption expenditure in million (or billion)
kroner in period t, Ct is defined as LCt/PCt where PCt is the price deflator in period t. If, for
example, Ct is in million 2000 kroner, this means that the base year of the consumer price index
PCt is 2000 (with annual data, PC2000 = 1, with quarterly data, the annual average is 1 in 2000).
Yt is defined accordingly.
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Figure 2.1: Temporary and permanent 1 percent changes in income, with associated
dynamic multipliers of the consumption function in (2.19).

Hence, in equation (2.17), β1 is interpreted as the elasticity of consumption with
respect to income: β1 represents the (approximate) percentage increase in real con-
sumption due to a 1% increase in income.

Note that the log-linear specification (2.17) implies that the marginal propensity
to consume is itself a function of income. In this sense, the log-linear model is
the more flexible of the two functional forms and this is part of the reason for its
popularity. To gain familiarity with the log-linear specification, we choose that
functional form in the rest of this section, and in the next, but later we will also use
the linear functional form, when that choice makes the exposition become easier.

Clearly, if we are right in our arguments about how pervasive dynamic behaviour
is in economics, equation (2.17) is a very restrictive formulation. For example,
according to (2.17), the whole adjustment to a change in income is completed within
a single period, and if income suddenly changes next period, consumer’s expenditure
changes just as suddenly. As noted above, immediate and complete adjustments to a
changes in economic conditions are rare, and dynamic models typically gives a more
realistic representation of the responses. A dynamic model of private consumption
allows for the possibility that period t− 1 income affects consumption, and that for
example habit formation induces a positive relationship between period t − 1 and
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Table 2.2: Dynamic multipliers and cumulated multipliers of the estimated con-
sumption function in (2.19), percentage change in consumption after a 1 percent
rise in income.

Temporary 1% change Permanent 1% change
Impact period 0.13 0.13

1. period after shock 0.31 0.18
2. period after shock 0.46 0.14
3. period after shock 0.57 0.11

... ... ...
long-run multiplier 1.00 0.00

period t consumption is

lnCt = β0 + β1 ln INCt + β2 ln INCt−1 + α lnCt−1 + εt (2.18)

which is an application of the ADL model. We note in passing that although habit
formation is an intuitive rationalization of the autoregressive term (with positive
α), economic theory of optimizing households gives the same prediction. In fact, in
distilled form, such theories imply that α = 1, and that current and lagged income
have no effect on current consumption.

Next consider an estimated version of (2.18):

lnCt = 0.04 + 0.13 ln INCt + 0.08 ln INCt−1 + 0.79 lnCt−1 (2.19)

where the numbers for the coefficients have been obtained by ordinary least squares
estimation on a sample of quarterly Norwegian data (1967(1)-2002(4). Using the
results above, we obtain the dynamic effects of an increase in income that are sum-
marized in table 2.2 and in figure 2.1.
Note that the second multiplier of the permanent change is equal to the sum of
the two first multipliers of the transitory shock (0.13 + 0.18 = 0.31). As we saw
above, this is due an an underlying algebraic relationship between the two types of
multipliers: multiplier j of a permanent shock is the cumulated sum of the j first
interim multipliers associated with a temporary shock.

Figure 2.1 shows graphically the two classes of dynamic multipliers for our con-
sumption function example. Panel a) shows the temporary change in income, and
below it, in panel c), you find the graph of the interim multipliers. Correspond-
ingly, panel b) and d) show the graphs with permanent shift in income and the
corresponding cumulated interim multipliers.

The results show that, apart from the first multiplier, the responses to a tempo-
rary shock is very different from the responses to a permanent change. A temporary
income increase gives an a moderate impact effect (1 % income increase leads to
0.13 % consumption increase), and the long-run effect on the consumption level is
zero. In contrast, the long-run effect of a permanent 1 % change in income is a 1%
increase in consumption. This has some interest for economic policy. It illustrates
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that if the income increase is due to a tax-cut, the effect of the policy will depend
of whether the households believe that the tax-cut is permanent, or whether it is
believe to be only temporary.

2.3 A typology of single equation linear models

The discussion at the end of the last section suggests that if the coefficient α in the
ADL model is restricted to for example 1 or to 0, quite different dynamic behaviour
of yt is implied. In fact the resulting models are special cases of the unrestricted ADL
model. For reference, this section gives a typology of models that are encompassed
by the ADL model. Some of these model we have already mentioned, while others
will appear later in the book.2

Table 2.3 contains three columns, for model Type, defining Equation and Restric-
tions, where we give the coefficient restrictions that must be true for each models
to be a valid simplifications of the ADL. For the ADL model itself no parameter
restrictions exists as long as we are interested in both stable and unstable solutions
for yt, see section 2.7. However, often economic theory implies that the long-run
dynamic multiplier of y with respect to xt is finite in absolute value, and in this
case we have seen that the restriction −1 < α < 1 applies. As section 2.7 will show,
this is the same as saying that we restrict our interest to the dynamically stable
solutions for yt, which explains why we have entered “−1 < α < 1 for stability”, in
the Restrictions column for the ADL.

For the Static model to be a valid simplification of the ADL, both β2 = 0 and
α = 0 must be true. By now, it should be obvious that the danger of using a static
model when the restrictions do not hold, is that we get misleading impression of
the adjustment lags (the dynamic multipliers). Specifically, the response of yt to a
change in xt is represented as immediate when it is in fact distributed over several
periods.

The autoregressive model (AR in the table), and the random walk model are
special cases at the other end of the spectrum, they are so called time series model: In
these cases the explanatory variable plays no role for the evolution of yt through time.
The AR model is dynamically stable, while in the case of the random walk there is no
asymptotically stable solution for yt, since the autoregressive coefficient is unity by
definition. Nevertheless, the random walk model plays an important role in empirical
macroeconomic analysis. In general, it serves as a benchmark against which the
performance of other models, with genuine economic content, can be judged. But
the random walk model can also be derived from economic theory. Perhaps the most
famous example is the random walk model of private consumption.3 Briefly, the
idea is that households relate consumption to their permanent income (or wealth).
However, given the information available at the end of time period t − 1, rational

2 In fact our typology is partial, and covers only 5 of the 9 models in the full typology of Hendry
(1995).

3This hypothesis is due to Hall (1978).
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Table 2.3: A model typology.

Type Equation Restrictions

ADL yt = β0 + β1xt + β2xt−1 + αyt−1 + εt. None
−1 < α < 1 for stability

Static yt = β0 + β1xt + εt. β2 = α = 0

AR yt = β0 + αyt−1 + εt β1 = β2 = 0
−1 < α < 1

Random walk yt = β0 + yt−1 + εt β1 = β2 = 0, α = 1.

DL yt = β0 + β1xt + β2xt−1 + εt α = 0

Differenced data1 ∆yt = β0 + β1∆xt + εt β2 = −β1, α = 1

ECM ∆yt = β0 + β1∆xt + (β1 + β2)xt−1 Same as ADL
+(α− 1)yt−1 + εt

Homogenous ECM ∆yt = β0 + β1∆xt β1 + β2 = −(α− 1)
+(α− 1)(yt−1 − xt−1) + εt

1 ∆ is the difference operator, defined as ∆zt ≡ zt − zt−1.

households cannot predict how their income will develop in period t, beyond what is
already incorporated in the consumption level of period t−1, and an average growth
rate which is incorporated in β0. Hence, the optimal planned consumption level in
period t is simply the consumption level of period t− 1 plus the so called drift term
β0.. Beyond the drift term, changes in consumption from one period to the next is
unpredictable on the basis of last periods’ information.

For the DL model to be a valid simplification of the ADL, only one coefficient
restriction needs to be true, namely α = 0. That said, the DL model is also a quite
restrictive model of the dynamic response to a shock, since the whole adjustment of
yt to a change in xt is completed in the course of only two periods.

The fourth model in Table 2.3, called the Differenced data model is included
since it is popular in modern macroeconomics.4 However, the economic interpre-

4For example, Blanchard and Katz (1997) present the standard model of the natural rate of
unemployment in U.S.A in the following way (p. 60): U.S. macroeconometric models...determine
the natural rate through two equations, a “price equation” ...and a “wage equation”. The “wage
equation” is a wage Phillips curve, see Chapter 3 below, and the “price equation” is an Differenced
data model, with the price growth rate on the left hand side, and the growth rate of wages (or unit
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tation of the Differenced data model (‘growth rate model’ if yt and xt are in logs)
is problematic, since behaviour according to this models can only be rationalized
if there are no cost of being out of equilibrium in terms of the levels variables yt
and xt.5 At present, this implication may not be obvious, but it section 2.5 it will
be explained when we review the properties of the two last models in Table 2.3,
the error-correction model, ECM,and the Homogeneous ECM. These two models do
not have the shortcomings of the Static, DL or Differenced data models. Specif-
ically, the ECM, is consistent with a long-run relationship between y and x, and
it also describes the behaviour of yt outside equilibrium. As explained in section
2.5 below, the ECM is a re-parameterization of the dynamically stable ADL, hence
none other restrictions applies to the ECM than to the dynamically stable ADL.
The Homogenous ECM has the same advantages as the ECM in terms of economic
interpretation, but the long-run multiplier is restricted to unity.

As noted, restricting the long-run multiplier to unity is not generic to the ECM,
but is implied by some economic theories. One example is so called Purchasing Power
Parity (PPP) theory, in which case yt is the log of the domestic price index (most
often the CPI), and xt is the log of an index of foreign prices, denoted in domestic
currency. The hypothesis of purchasing power parity states that the elasticity of the
domestic price level with respect to the foreign price level is unity, and the most
realistic implementation of the PPP hypothesis is to set β1 + β2 = (1 − α) which
implies δlong−run = 1, as we have seen. In section 2.6, a different interpretation
of the PPP hypothesis is discussed as well. Other examples of Homogenous ECMs
motivated by economic theory include consumption functions that are consistent
with a constant long-run saving rate, and theories of wage setting that imply that
the wage-share is constant in the long-run, as discussed in Chapter 3.

The ADL model in equation (2.1) is general enough to serve as an introduction
to most aspects of dynamic analysis in economics. However, the ADL model, and
the dynamic multiplier analysis, can be extended in several directions to provide
additional flexibility in applications. The most important extensions are:

1. Several explanatory variables

2. Longer lags

3. Systems of dynamics equations

In economics, more than one explanatory variable is usually needed to provide a
satisfactory explanation of the behaviour of a variable yt. The ADL model (2.1) can

labour costs) on the right hand side.
5A more technical motivation for the Differenced data model is that, by taking the difference

of yt and xt prior to estimation, the econometric problem of residual autocorrelation is reduced.
However, unless the two restrictions that define the model are empirically acceptable, choosing the
Differenced data model rather than the ADL model creates more problems than it solves. For
example, the regression coefficient of ∆xt will neither be a correct estimate of the impact multiplier
β1, nor of the long-run multiplier δlong−run. Neverthless, estimation of models with only differenced
data, often large systems which are dubbed differenced data vector autoregressive models (dVAR)
has become stanadard in applied macroeconomics.
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be generalized to any number of explanatory variables. However, nothing is lost in
terms of understanding by only considering the case of two exogenous variables, x1,t
and x2,t. The extension of equation (2.1) to this case is

yt = β0 + β11x1t + β21x1t−1+ (2.20)

β12x2t + β22x2t−1 + αyt−1 + εt,

where βik is the coefficient of the i
0th lag of the explanatory variable k. The dynamic

multipliers of yt can be with respect to either x1 of x2, the derivation being exactly
the same as above. Formally, we can think of each set of multipliers as correspond-
ing to partial derivatives. In applications, the dynamic multipliers of the different
explanatory variables are often found to be markedly different. For example, if yt
is the (log of) the hourly wage, while x1 and x2 are the rate of unemployment and
productivity respectively, dynamic multipliers with respect to unemployment is usu-
ally much smaller in magnitude than the multipliers with respect to productivity for
reasons that are explained in chapter 3.

Longer lags in either the x’s or in the autoregressive part of the model makes
for more flexible dynamics. Even though the dynamics of such models can be quite
complicated, the dynamic multipliers always exist, and can be computed by following
the logic of section ?? above. However, as such calculation quickly become tiring, we
use computer software when we work with such models (good econometric software
packages includes options for dynamic multiplier analysis). In this course, we do not
consider the formal analysis of higher order autoregressive dynamics.

Often, an ADL equation is joined up with other equations to form dynamic
system of equations. For example, assume that x2t is an exogenous explanatory
variable in (2.20) but that x1,t is an endogenous variable. This implies that (2.20) is
supplemented by a second equation which has x1t on the left hand side and with yt
as one of the variables on the right hand side. Hence, x1t and yt are determined in a
simultaneous two equation system. Another, equally relevant example, is where the
equation for x1t contains the lag yt−1, but not the contemporaneous yt. Also in this
case are x2t and yt jointly determined, in what is referred to as a recursive system
of equations. In either case the true multipliers of yt with respect to the exogenous
variable x2t, cannot be derived from equation (2.20) alone, because that would make
us miss the feed-back that a change in x2,t has on yt via the endogenous variable
x1,t. To obtain the correct dynamic multipliers of y with respect to x1 we must use
the two equation system.

Many more economic examples of dynamic systems, and of how they can be used
in analysis, will crop up as we proceed. In particular, section 2.8 takes the dynamic
version of the Keynesian multiplier models as one specific example, and the Solow
growth model, and a Real Business Cycle model as two other examples. In fact, the
reader will have noticed that already in Chapter 1 we analyzed a dynamic system
of supply and demand in a single-market, without any formalism though. Other
applications of dynamic systems are found in the chapters on wage-price dynamics
and on economic policy analysis.
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2.4 More examples of dynamic relationships in economics

The ADL model covers a wide range of economic models, in fact all theories that can
be expressed as linear models of causal or future-independent processes. A causal
process is characterized by its solution (see section 2.7) at time t being independent
of future values of the explanatory variable and of the disturbance. Hence future
values {xt+1, xt+2, ...} and {εt+1, εt+2,..} do not affect affect the solution for yt.
Although causal models are practical, and therefore widely used in economics and
in other disciplines, macroeconomics make use of non-causal models as well. The
extension of dynamics to non-causal processes, where the dynamically stable solution
for yt depends on {xt+1, xt+2, ...} and {εt+1, εt+2,..} stems from the forward-looking
behaviour which is assumed in many modern theories. In chapter 3.6, we present the
New Keynesian Phillips Curve, which is a model of price adjustment that illustrate
many of the typical traits of non-causal models. In this section we give examples of
standard models that are covered by the causal ADL model.

2.4.1 The dynamic consumption function (revisited)

The consumption function with both consumption and income in logs has been the
our example so far. Of course, exactly the same analysis and algebra apply to a
linear functional form of the consumption function, except that the multipliers will
be in units of million kroner (at fixed prices) rather than percentages. In section 2.8
below the linear consumption function is combined with the general budget equation
to form a dynamic system.

In modern econometric work on the consumption function, more variables are
usually included than just income. Hence, there are other multipliers to consider
than the ones with respect to INCt. The most commonly found additional ex-
planatory variables are wealth, the real interest rate and indicators of demographic
developments, see Erlandsen and Nymoen (2008).

2.4.2 The price Phillips curve

In Chapter 3, and several times later in the book, we will consider the so called
expectations augmented Phillips curve. An example of such a relationship is

πt = β0 + β11ut + β12ut−1 + β21π
e
t+1 + εt. (2.21)

πt denotes the rate of inflation, πt = ln(Pt/Pt−1), where Pt is an index of the price
level of the economy. ut is the rate of unemployment–or its natural logarithm.
The distinction between ut as the unemployment rate (or percentage), or the log
of the rate of unemployment is an example of the care that needs to be taken in
choice between different functional forms. If ut is a rate (as with the unemployment
percentage), the Phillips curve is linear, and the effect of a small change in ut on πt
is independent of the initial unemployment percentage.
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If on the other hand ut is defined as ut = ln(the rate of unemployment), the
Phillips curve is non-linear. In that case, and starting from a low level, a rise in
the rate of unemployment leads to a larger reduction in πt than if the initial rate
of unemployment is high. The graph of the price Phillips curve, with the rate
of unemployment on the horizontal axis, is curved towards the origin (a convex
function).6 In many countries, a convex Phillips curve is known to give a better
fit to the data than the linear function. In these economies, a policy that aims at
controlling inflation indirectly, via the rate of unemployment, has a better chance of
success if the initial level of unemployment is relatively low, compared to the case
where the rate of unemployment is relatively high. Thus we see that an apparently
technical detail, namely the choice of functional form, has important implications
for the effectiveness of policy. This is important to keep this in mind when we later
in the this book, for reasons of exposition, often choose to define ut as the rate of
unemployment.

In equation (2.21), the distributed lag in the rate of unemployment captures
several interesting economic hypotheses. For example, if the rise in inflation following
a fall in unemployment is first weak but then gets stronger, we might have that both
β11 < 0 and β12 < 0. On the other hand, some economist have argued the opposite:
that the inflationary effects of changes in unemployment are likely to be strongest
in the first periods after shock to unemployment, in which case we might expect to
find that β11 < 0 while β12 > 0.

Finally, in equation (2.21), πet+1 denotes the expected rate of inflation one period
ahead, and in the same manner as earlier in this chapter, εt denotes a random
disturbance term. In sum, (2.21) includes two explanatory variables: the rate of
unemployment, and the expectation of the future value of the endogenous variable.
The rate of unemployment is observable, but expectations are usually not. In order
to make progress from (2.21) it is therefore necessary to specify a hypothesis of
expectations. The simplest hypothesis is that expectations build on the last observed
rate of inflation, hence

πet+1 = τπt−1, (2.22)

where the parameter τ is typically positive, but not larger than 1, i.e., 0 < τ ≤ 1.7
Substitution of πet+1 by (2.22), the Phillips curve in (2.21) becomes

πt = β0 + β11ut + β12ut−1 + απt−1 + εt, (2.23)

which is an ADL equation (with α = β21τ).

6On Norwegian data, wage Phillips curves, and also the error correction models of wage formation
that we encounter below, have alternatively included a reciprocal term, i.e., 1/ut, where ut is the
rate of unemployment, or even the double reciprocal 1/u2t . This functional form is “more non-linear”
than the log-form. Beyond a certain level of unemployment, there is no more inflation reduction to
be hauled from further increases of unemployment, see Johansen (1995).

7This fits real word data for the case where we think of πt as the annual rate of inflation. With
monthly or quarterly observations of the rate of inflation, seasonal variation calls for more flexible
dynamics (more lags) than in (2.21) and/or (2.22).
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As explained, the hypothesis in equation (2.22) is just one out of many possible
formulations about expectations formation. Alternative specifications give rise to
other dynamic models of the rate of inflation. Consider for example a situation
where the government have introduced an explicit inflation target, which we denote
π̄. In this case, it is reasonable to believe that firms and households will base their
expectations of future inflation on the attainment of the inflation target. In the
simplest case we may then set

πet+1 = π̄ (2.24)

in place of (2.22). As an exercise, you should convince yourself that equations (2.21)
and (2.24) imply an equation for inflation which is an example of a distributed lag
model (DL model). More generally, firms and households take into consideration
the possibility that future inflation is not exactly on target. Hence they may adopt
a more robust forecasting rule, for example

πet+1 = (1− τ)π̄ + τπt−1, 0 < τ ≤ 1. (2.25)

In this case, the derived dynamic equation for inflation again takes the form of an
ADL model.

2.4.3 Exchange rate dynamics

The market for foreign exchange plays a central role in open economy macroeco-
nomics. As always in commodity markets there is a demand and supply side. In
the market for foreign exchange, the good in question is foreign currency. Without
loss of generality, we can focus on a single country and assume that there is a single
foreign country. The price of the good–the nominal exchange rate–is then the
price of the foreign currency in terms of the currency of the domestic country. For
simplicity we can for example refer to the foreign currency as US dollars, or euro,
and to the domestic currency as kroner. The exchange rate is then the price of
dollars (or euros) in kroner, for example 7 kroner per dollar.8

In the theory of the foreign exchange market a change of emphasis has taken
place in recent years. The standard open economy macro model used to treat the
net supply of currency to the domestic central bank as a flow variable, primarily de-
termined by the current account. In times of a current account surplus for example,
there is an excess supply of currency to the central bank. Hence, in the flow model of
the market for foreign exchange, a positive net supply of foreign currency, explained
by a surplus on the current account, is expected to lead to currency appreciation (in
the case of a floating exchange rate regime).

The modern approach to the foreign exchange market does not deny that the
needs for currency exchange of exporters and importers make out a part of the net
supply of foreign exchange. However, it is a fact that in modern open economies
most of the trade in foreign currency is capital movements. Domestic and foreign

8We refer to Rødseth (2000, Ch 1 and 3.1) for an excellent exposition of the portfolio model of
the market for foreign exchange.
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investors buy and sell huge amounts of foreign currency in a drive to change the
composition of asset portfolios in a profitable direction. During one day (or week,
or month) of trade on the foreign exchange market, the billions of euros traded on
the grounds of portfolio decisions totally dominate the amount of trade which can
be put down to exports and imports of goods and services. In accordance with the
fact that large stocks of wealth can be shifted from one currency to another at any
point in time, the modern approach views the net supply of foreign currency as a
stock variable.

The stock approach to the market for foreign exchange is often called the portfolio
model, since the idea is that investors invest their financial wealth in assets that are
denominated in different currencies. Investors will change the composition of their
financial investments, their portfolios, when expectations about returns change. In
the portfolio model, the unit of measurement for quantity is units of foreign currency,
for example euros, not euros per units of time as in the flow approach.

In the portfolio model of the foreign exchange market the net supply of foreign
currency to the domestic central bank depends in particular on the risk premium
defined as

risk premium = it − i
∗
t − ee

where it and i∗ are the domestic and foreign nominal interest rates respectively,
and ee denotes the expected rate of depreciation. The risk premium reflects by how
much extra the investors get paid over the expected return on euros to take the risk
of investing in kroner in the spot foreign exchange market. Heuristically, the net
supply of foreign currency to the central bank is a rising function of the risk premium,
since investors find kroner a more profitable asset when the risk premium increases.
Hence, in a model of a floating exchange rate regime where the net demand of foreign
currency is exogenous, in the form of a fixed stock of foreign exchange reserves, the
nominal exchange rate (kroner/euro) Et is decreasing in the risk premium. We can
represent this basic implication of the portfolio model with the aid of the following
relationship:

lnEt = β0 − β1(it − i
∗
t − ee) + εt, β1 > 0, (2.26)

where εt as usual represents a disturbance, which by the way might be quite large in
comparison with the variability of lnEt, meaning that we cannot expect a particu-
larly close fit between our model and the actual nominal exchange rate. In passing,
you may also note that the parameter −β1 is called a semi-elasticity. It measures
the relative change in Et due to a unit increase in the risk premium.

When using equation (2.26), it must be understood that β0 is only a constant
parameter subject to whole range of ceteris paribus conditions. For example, a reval-
uation of investors’ wealth (due to a price level shock internationally, for example),
will induce a change in β0. Moreover, β0 can only be seen as invariant to the current
account over a limited time period. A current account deficit which lasts for several
months, or maybe years, will inevitably affect the stock of net supply of currency,
and we can think of this as a gradual increase in β0. In this way we can in principle
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bridge the gap between the stock approach to the foreign exchange rate market, and
the older flow approach. Formally, we can write β0 as a function of a distributed
lag of past current accounts: β0(CAt, CAt−1, ...CAt−j), with negative partial deriv-
atives, and with j normally a quite large number (6-12 months for example). Hence,
the link to the current account defines a dynamic model of the exchange rate:

lnEt = β0(CAt, CAt−1, ...CAt−j)− β1(it − i
∗
t − ee) + εt, β1 > 0

Another source of dynamics, which is probably quite important in the short
time span of say 0-2 years, has to do with expectations. So far we have implicitly
assumed that the anticipated rate of depreciation is ee constant. In reality, the ee

is likely to be highly variable, and to depend of a long list of sentiments and also of
macroeconomic variables. However, for modelling purposes, we usually assume that
the expected degree of depreciation depend on the level of the exchange rate.9 If
expectations are so called ‘regressive’, meaning that:

ee = −τ lnEt−1, τ > 0,

the equation for lnEt can be written as

lnEt = β0 − β1(it − i
∗
t ) + α lnEt−1 + εt (2.27)

with β1 > 0 and α = −β1τ < 0. We recognize equation (2.27) as another example
of an ADL model. Note that unlike the earlier examples in this chapter (but in
line with the cobweb model of chapter 1), the coefficient of the lagged endogenous
variable is negative in the portfolio model with regressive anticipations.

2.5 Error correction

If we compare the long-run multiplier of a permanent shock to the estimated regres-
sion coefficient (or elasticity) of a static model, there is often a close correspondence.
This is not a coincidence, since the dynamic formulation in fact accommodates a
so called steady state relationship in the form of a static equation. In this sense, a
static model is therefore already embedded in a dynamic model.

To look closer at the correspondence between the static model formulation and
the steady state properties of the dynamic model, we consider again the model:

yt = β0 + β1xt + β2xt−1 + αyt−1 + εt. (2.28)

Above, we have emphasized two properties of this model. First it usually explains
the behaviour of the dependent variable much better than a static relationship,
which imposes on the data that all adjustments of y to changes in x take place
without delay. Second, it allows us to calculate the dynamic multipliers. But what
does (2.28) imply about the long-run relationship between y and x, the sort of

9See Rødseth (2000, p 21).
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relationship that we expect to hold when both yt and xt are growing with constant
rates, a so called steady state situation?

To answer this question it is useful to re-write equation (2.28), so that the re-
lationship between levels and growth becomes clear. The reason we do this is to
establish that changes in yt are not only caused by changes in xt, but also by last
period’s deviation between y and the steady state equilibrium value of y, which we
denote y∗. Thus, the period-to-period changes in yt are correcting past deviations
from equilibrium, as well as responding to (new) changes in the explanatory vari-
able. The version of the model which shows this most clearly is known as the error
correction model, ECM for short, see Table 2.3 above.

To establish the ECM transformation of the ADL, we need to make two algebraic
steps, and to establish a little more notation (related to the concept of the steady
state). In terms of algebra, we first subtract yt−1 from either side of equation (2.28),
and then subtract and add β1xt−1 on the right hand side. This gives

∆yt = β0 + β1xt + β2xt−1 + (α− 1)yt−1 + εt (2.29)

= β0 + β1∆xt + (β1 + β2)xt−1 + (α− 1)yt−1 + εt

where ∆ is known as the difference operator, defined as ∆zt = zt − zt−1 for a time
series variable zt. If yt and xt are measured in logarithms (like consumption and
income in our consumption function example) ∆yt and ∆xt are their respective
growth rates. Hence, for example, in the consumption function example:

∆ lnCt = ln(Ct/Ct−1) = ln(1 +
Ct − Ct−1

Ct−1
) ≈ Ct − Ct−1

Ct−1
.

because of the approximation explained in appendix A. The model in (2.29) is
therefore explaining the growth rate of consumption by, first, the income growth
rate and, second, the past levels of income and consumption.

The occurrence of both a variable’s growth rate and its level is a defining char-
acteristic of genuinely dynamic models. Frisch, in 1929, offered the following as a
definition of dynamics, alongside the definitions due to him that we presented in
chapter 1:

A theoretical law which is such that it involves the notion of rate of
change or the notion of speed of reaction (in terms of time) is a dynamic
law. All other laws are static.10

Since the disturbance term εt is the same in (2.28) as in (2.29) it must be true that
everything about the evolution of yt that is explained by the ADL, is equally well
explained by the ECM. For this reason, the transformation from ADL to ECM is
often referred to as an “1-1” transformation, meaning that the two models represent
the same underlying economic behaviour. However, the point of the transformation
10Frisch (1929) and Frisch (1992, p 394).
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is that the coefficients of the explanatory variables of the ECM have a particularly
useful interpretation. To see this, we first collect the level terms yt−1 and xt−1 in
the second line of (2.29) inside a bracket, as in

∆yt = β0 + β1∆xt − (1− α)

½
y − β1 + β2

1− α
x

¾
t−1

+ εt, − 1 < α < 1 (2.30)

which is valid mathematically if α is between −1 and 1, as indicated in (2.30). From
what we already know about dynamics, it is easy to see why it is important to avoid
values of α equal to 1, because that would mean that the coefficient of x is infinite.
The reason why it is equally important to avoid α = −1 is explained in section 2.7
below, where the nature of unstable solutions of dynamic models is explained.

Let us assume that in the long-run, there is a static relationship between x and
the equilibrium value y, which we denote y∗, hence we postulate that

y∗t = k + γxt, (2.31)

where k and γ are long-run parameters, γ in particular being the long-run multiplier
of y with respect to a permanent change in x. However, we know already from section
2.1, that the long-run multiplier of the ADL model (2.28) is equal to (β1+β2)/(1−α).
Hence, we can identify the slope coefficient γ in the long term model in the following
way

γ ≡ β1 + β2
1− α

, − 1 < α < 1, (2.32)

and the expression inside the brackets in (2.30) can be rewritten as

y − β1 + β2
1− α

x = y − γx = y − y∗ + k. (2.33)

Using (2.33) in (2.30) we obtain

∆yt = β0 − (1− α)k + β1∆xt − (1− α) {y − y∗}t−1 + εt, − 1 < α < 1 (2.34)

showing that ∆yt is explained by two factors: first the change in the explanatory
variable, ∆xt, and second, the correction of the last period’s disequilibrium, the
deviation between yt−1 and last periods equilibrium level y∗t−1. Using the repre-
sentation in (2.34) we see that the autoregressive parameter α is transformed to
an adjustment coefficient −(1 − α) that measures by how much a past disequilib-
rium is being corrected by this period’s adjustment of yt. Heuristically, the size of
−(1−α), which is often referred to as the error correction coefficient is related to an
underlying cost of being out of equilibrium, or, which amounts to the same thing,
the cost of adjustment. Indeed, the ECM can be rationalized from economic theory
by assuming that agents have a desire for a certain equilibrium combination of the
levels variables y and x, but that the evolution of xt cannot be foretold perfectly,
and that agents then seeks to minimize quadratic adjustment costs.
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With reference to Table 2.3, we note that the Homogenous ECM has exactly
the same properties and interpretation as the ordinary ECM, but that the long-
run multiplier γ is unity according to some relevant economic theory of the long-
run relationship between xt and yt. The other models in the typology in contrast
entail restrictions on the speed of adjustment, and on the cost of being out of levels
equilibrium.

We next consider a theoretical steady state situation in which growth rates are
constants, ∆xt = gx, ∆yt = gy, and the disturbance term is equal to its average
value of zero, εt = 0. Imposing this in (2.34), and noting that {y − y∗}t−1 = 0 by
definition of a steady state, gives

gy = β0 + β1gx − (1− α)k,

meaning that the constant term in the long-term relationship (2.31) can be expressed
as

k =
−gy + β0 + β1gx

1− α
, (2.35)

again subject to a condition −1 < α < 1. Often we only consider a static steady
states, with no growth, so gy = gx = 0. In that case k is simply β0/(1− α).

In sum, there is an important correspondence between the dynamic model and
a static relationship like (2.31) motivated by economic theory:

1. A theoretical linear relationship y∗ = k + γx can be retrieved as the steady
state solution of the dynamic model (2.28). This generalizes to theory models
with more than one explanatory variable (e.g., y∗ = k + γ1x1 + γ2x2) as long
as both x1t and x2t (and/or their lags) are included in the dynamic model.
In chapter 3 we will discuss some details of this extension in the context of
models of wage and price setting (inflation).

2. The theoretical slope coefficient γ is identical to the corresponding long-run
multiplier (of a permanent increase in the respective explanatory variables).

3. Conversely, if we are only interested in quantifying a long-run multiplier (rather
than the whole sequence of dynamic multipliers), it can be found by using the
identity in (2.32).

Returning to another insight in this section, we note that the transformation of the
ADL model into levels and differences is often referred to as “the error correction
transformation”. The name reflects that according to the model, ∆yt corrects past
deviation from the long-run equilibrium relationship. Error correction models be-
came popular in econometrics in the early 1980s. Since ∆yt is actually bringing
the level of y towards the long-run relationship, a better name may be equilibrium
correction model, and some authors now use that term consistently, see Hendry
(2008). The acronym ECM is used for both error correction model and equilibrium
correction model. .
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The ECM, not only helps clarify the link between dynamics and the theoretical
steady state, it also plays an essential role in econometric modelling of non-stationary
time series. In 2003, when Clive Granger and Rob Engle were awarded the Noble
Price in economics, this was in part due to their finding that so called cointegration
between two or more non-stationary variables implies error correction, and vice
versa.

In common usage, the term error correction model is not only used about equa-
tion (2.30), where the long-run relationship is explicit, but also about (the second
line) of (2.29). One reason is that the long-run multipliers (the coefficients of the
long-run relationship) can be easily established by estimating the linear relationship
in (2.30), and then calculating the ratio γ in (2.32). Direct estimation of γ requires
a non-linear estimation method.

2.6 The two interpretations of static equations

In the first chapter we discussed the definitional differences between static mod-
els and dynamic models. One of the conclusions was that there are two different
interpretations of static relationships in macroeconomics:

1. As representations of actual behaviour in macroeconomics, and

2. as corresponding to long-run, steady state, relationships.

In terms of the concepts we have developed in this chapter, the first interpretation
corresponds to simplifying the ADL model

yt = β0 + β1xt + β2xt−1 + αyt−1 + εt.

by setting β2 = 0 and α = 0 as in the Static model in the typology in table 2.3. In this
interpretation, a static model are seen to be a special case of the ADL model. Since
there are no reason to believe a priori that the two parameters are empirically found
to be zero very often, the static special case is also a restrictive model relative to the
ADL. In economic terminology, and as we have noted in the first chapter, the validity
of the static model hinges on the assumption that the speed of adjustment is so fast
that explicit dynamics can be omitted from the model. In more operational terms
we may perhaps put it this way: Sometimes, we can assume (either because it is
realistic or because we are willing to simplify) that the dynamic adjustment process
is so fast that the adjustment to a change in an exogenous variable is completed
within the period of analysis. Hence, at least as a first approximation, we do not
need to formulate the dynamic adjustment process explicitly.

One example of this rationale for a static model is the simple Keynesian income-
expenditure model. As the reader will know, this model is based on an assumption
of fixed wages and prices. When we use the income expenditure model, the focus
is on the aggregate short-run effects of for example a rise in government expen-
diture, and for this purpose, the results of the analysis is believed not to be seri-
ously distorted by the abstraction from price-wage dynamics, which in industrialized
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economies normally is more sluggish than the response in employment and output.
It is understood that the relevance of this rationalization depends on the compar-
ative and historical context, and on the stage of evolution of the economy which is
the subject to the analysis. Broadly speaking, the assumption is only realistic for
economies where the short-run aggregate supply curve is relatively horizontal–for
technological and/or institutional reasons. The model is not relevant for historical
or contemporary agricultural economies for example, or for industrialized economies
that have been damaged by wars or by the collapse of institutions, and which there-
fore have become hyper-inflation economies. The Weimar republic in Germany after
the First World War is an important historical example. Zimbabwe between 1998
and 2008 is a contemporary example–and there are many more.

If the time horizon of the analysis is longer than 1-2 years, the assumption of
fixed wage and price levels becomes untenable, also in the case of well functioning
industrialized economies. The loss of relevance from ignoring for example the effects
of inflation on the real interest rate and on the rate of foreign exchange, is also
increasing with the time horizon of the analysis. Hence, the explicit modelling of
wage and price dynamics is necessary if the model is to be relevant for fiscal and
monetary policy analysis over the business cycle, i.e., a 5 to 10 year period. Chapter
3 therefore gives a comprehensive introduction to dynamic models of wage and price
formation.

The second interpretation of a static model allows β2 and a to take values differ-
ent from zero, and in fact only hinges on α being “different from one”. This second
interpretation of static models is exactly the interpretation that we have developed
so far in this chapter, and in section 2.5 on the ECM in particular. This interpreta-
tion applies to all asymptotically stable dynamic models, where a model’s implied
steady state relationships represents an equilibrium situation. That equilibrium can
be represented mathematically with the aid of static (timeless) equations of the type
given above. Frisch’s formulation from 1929 already contained this interpretation of
static models as long-relationships:

Therefore static laws basically express what would happen in the
long-run if the static theory’s assumptions prevailed long enough for the
phenomena to have time to have time to react in accordance with these
assumptions.11

Clearly, to avoid confusion, the two interpretations of a static model should not be
mixed-up. Nevertheless, the two interpretation are often confounded, and it is not
uncommon that static equations are first presented as long-run relationship, but
then, at some point in the argument the same relationship is used as a short-run
model, often in a rather complicated system-of-equations. In chapter 3, we show
that a standard way of rationalizing a modern Phillips curve relationship suffers
from lack of precision in this respect.

11Frisch (1992, p 395), Frisch’s italics.
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Another example which shows that care must be taken when we choose an oper-
ational interpretation of generally formulated economic hypotheses, is provided by
the theory of Purchasing Power Parity, PPP. This hypothesis is about the behaviour
the real exchange rate, σ, which is defined as

σ =
EP ∗

P

where P ∗ represents the foreign price level, E is the nominal exchange rate (kro-
ner/euro) and P is the domestic price level. The purchasing power parity condition
(PPP) used in many macroeconomic models says that “the real exchange rate is
constant”.12 This is trivial if the empirical counterparts of E, P ∗ and P , i.e. the
observable time series Et, P ∗t and Pt, are constant, but even a casual glance at the
data shows that they are not. So, to be able to put the PPP hypothesis to use
(or to test), we must ask about the time perspective of the PPP condition. If it is
taken as a short-run proposition, he real exchange rate is constant from one period
to the next, σt = σt−1 = k. In the case of exogenous Et, like in a fixed exchange
rate regime, and with an exogenous foreign price level, PPP is seen to imply the
following model of the domestic price level Pt:

lnPt = − ln k + lnEt + lnP
∗
t , (2.36)

a static price equation, which says that the effect of a currency change in period
t on the domestic price level is full and immediate in period t. Hence, in this
interpretation, the short-run elasticities of the domestic price level with respect to
its determinants, Et and P ∗t , are identical and equal to the long-run elasticities. All
elasticities are unity. In the exchange rate literature, this case is referred to as the
case of full and immediate pass-through.

If on the other hand, PPP is interpreted as a long-run proposition, we have
instead the interpretation that σt = σ̄ in a steady state situation, and thus

∆ lnPt = gE + π∗ (2.37)

where gE and π∗ denote the long-run constant growth rates of the nominal exchange
rate and of foreign prices. In this interpretation there is full long-run pass-through,
but the PPP hypothesis has no implications for the short-run pass-through, i.e. for
the dynamic multipliers. However, (2.37) is often confounded with the relationship

∆ lnPt = ∆ lnEt +∆ lnP
∗
t

which is a Differenced data model in terms of the typology in table 2.3, and so holds
no implication for the long-run dynamics.

12For a concise introduction to the purchasing power parity, see Rødseth (2000, p 261).
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2.7 Solution and simulation of dynamic models

The reader will have noted that the existence of a finite long-run multiplier, and
thereby the validity of the correspondence between the ADL model and long-run
relationships, depends on the autoregressive parameter α in (2.28) being different
from unity. In section 2.7.1 we show that the parameter α is also crucial for the
nature and type of solution of equation (2.28). Several of the insights obtained by
considering the solution of the ADL equation (2.28) in some detail, carry over to
more complicated equations as well as to systems of equations.

2.7.1 The solution of ADL equations

In order to discuss the solution of ADL models, it is useful to first consider the
simpler case of a deterministic autoregressive model, where we abstract from the
distributed lag part (xt and xt−1) of the model, as well as from the disturbance
term (εt). One way to achieve this simplification of (2.28) is to assume that both xt
and εt are fixed at their respective constant averages:

εt = 0 for t = 1, ..., and

xt = mx for t = 0, 1....

Hence we follow convention and assume that each εt, representing a small and ran-
dom influence on y, has a common mean of zero. For the explanatory variable xt
the mean is denoted mx. We write the simplified model as

yt = β0 + (β1 + β2)mx + αyt−1, for t = 1, 2, ..... (2.38)

In the following we proceed as if the the coefficients β0, β1, β2 and α are known
numbers. This is a simplifying assumption which allows us to abstract from estima-
tion issues, which in any case belong to a course in time series econometrics.

We assume that equation (2.38) holds for t = 1, 2, .... It is usual to refer to t = 0
as the initial period or the initial condition. The assumption we make about the
initial period is crucial for the existence and uniqueness of a solution. An important
theorem is the following: If y0 is a fixed and known number, then there is a unique
sequence of numbers y0, y1, y2, ... which is the solution of (2.38). This can be seen by
induction: Consider first t = 0: From the assumption of known initial conditions, y0
then follows. Next, set t = 1 in (2.38), and y1 is seen to determined uniquely since
we already know y0. And so on: having established yt−1 we find yt be solving (2.38)
one period forward. This procedure is also known as solving the equation recursively
from known initial conditions.

You may note that, unlike other “conditions for solution” in other areas of math-
ematical economics, the requirement of fixed and known initial conditions is almost
trivial, since y0 is simply given “from history”. If we open up for the possibility
that the initial condition is not determined by history, but that it can “jump” at
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any point in time, there are other solutions to consider. Such solutions play a role
in macroeconomics, as the solutions of the non-causal model mentioned above. A
full treatment of the solution of non-causal models belongs to more mathematically
more advanced courses in macrodynamics. However, we will give specific examples
in chapter 3.6 when we discuss the forward-looking New Keynesian price Phillips
curve.

The algebraic properties of the solution of (2.38) carry over to other, less stylized,
cases so it is worth considering in more detail. Using the recursive procedure as just
explained, we obtain the solution for the three first periods, using B = β1 + β2 to
simply the notation:

y1 = β0 +Bmx + αy0

y2 = β0 +Bmx + αy1

= β0(1 + α) +Bmx(1 + α) + α2y0

= (β0 +Bmx)(1 + α) + α2y0

y3 = β0 +Bmx + αy2

= (β0 +Bmx)(1 + α+ α2) + α3y0.

As can be seen there is a clear pattern, which is repeated from period to period, and
which allows us to express the solution {y1, y2, ...} of (2.38) compactly as

yt = (β0 +Bmx)
t−1X
s=0

αs + αty0, t = 1, 2, ... (2.39)

for the case of known initial condition y0. Equation (2.39) is a useful reference for
discussion of the three types of solution of ADL models, namely the stable, unstable
and explosive solutions. We start with the stable solution, and then consider the
two others.

2.7.1.1 Stable solution

The condition
−1 < α < 1 (2.40)

is the necessary and sufficient condition for the existence of a globally asymptotically
stable solution. The stable solution has the characteristic that asymptotically there
is no trace left of the initial condition y0. From (2.39) we see that as the distance in
time between yt and the initial condition increases, y0 has less and less influence on
the solution. When t becomes large (approaches infinity), the influence of the initial

condition becomes negligible. Since
t−1X
s=0

αs → 1
1−α as t→∞, we have asymptotically:

y∗ =
(β0 +Bmx)

1− α
(2.41)
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Figure 2.2: Panel a) and b): Two stable solutions of (2.38), (corresponding to
positive and negative values of α. Panel c): Two unstable solutions (corresponding
to different initial conditions). Panel d). An explosive solution, See the text for
details about each case.

where y∗ denotes the equilibrium of yt. As stated, y∗ is independent of y0.

Assume that there is permanent change in xt. Such a change can be implemented
as a shift in the mean mx. Keeping in mind that B = β1 + β2, the derivative of y

∗

with respect to a permanent change in x is

∂y/∂mx = (β1 + β2)/(1− α),

which corresponds to the long-run multiplier of yt with respect to a permanent
change in xt. Finally, note also that (2.35) above, although derived under differ-
ent assumption about the exogenous variable (namely a constant growth rate), is
compatible with (2.41).

The stable solution can be written in an alternative and very instructive way.
Note first that by using the formula for the sum of the t−1 first terms in a geometric
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progression,
t−1X
s=0

αs can be written as

t−1X
s=0

αs =
1− αt

(1− α)
.

Using this result in (2.39), and next adding and subtracting (β0 +Bmx)α
t/(1− α)

on the right hand side of (2.39), we obtain

yt =
(β0 +Bmx)

1− α
+ αt(y0 −

β0 +Bmx

1− α
) (2.42)

= y∗ + αt(y0 − y∗), when − 1 < α < 1.

In the stable case, the dynamic process is essentially correcting the initial discrepancy
(disequilibrium) between the initial level of y and its long-run level.

Panel a) of Figure 2.2 shows a numerical example of a stable solution of equation
(2.38). In the example we have set α = 0.8 and we have have chosen values of β0
and Bmx so that y∗ = 5. We use computer generated data and the initial period
(corresponding to t = 0 in the formulae) is t = 200. The initial value is y200 = 5.08.
Since the initial value is higher than the equilibrium value, and α is positive, the
solution approaches y∗ = 5 from above.

Panel b) of the figure illustrates another stable solution, namely the solution
for the case of a negative autoregressive coefficient, α = −0.8. In this case the
initial value is y200 = 1.59, which is markedly lower than the equilibrium of y∗ = 5.
According to equation (2.42) the solution for period 201 becomes

y201 = 5− 0.8× (1.59− 5) = 7.73,

and the graph is seen to confirm this. Due to the negative autoregressive coefficient
the solution characteristically oscillates towards the equilibrium value.

2.7.1.2 Unstable solution

When α = 1, we obtain from equation (2.39):

yt = (β0 +Bmx)t+ y0, t = 1, 2, ... (2.43)

showing that the solution contains a linear trend and that the initial condition exerts
full influence over yt even over infinitely long distances. There is of course no well
defined equilibrium where yt settles in the long run, and neither is there a finite long-
run multiplier. Nevertheless, the solution is perfectly valid mathematically speaking:
given an initial condition, there is one and only one sequence of numbers y1, y2, ...yT
which satisfy the model.

The instability of the solution is however apparent when we consider not a single
solution but a sequence of solutions. Assume that we first find a solution conditional
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on y0, and denote the solution
©
y01, y

0
2, ...y

0
T

ª
. Note that this is in in fact a forecast

for the all the periods t = 1, ..., T conditional on the information about the economy
which is contained in y0. After one period we will usually want to recalculate the
solution because something we did not anticipate occurred in period 1, making
y01 6= y1 and we will want to condition the new forecast on the observed y1. The
updated solution is

©
y12, y

1
3, ...y

1
T

ª
since we now condition on y1. From (2.43) we see

that as long as y01 6= y1 (the same as saying that ε1 6= 0) we will have y02 − y12 6= 0,
y03−y13 6= 0, ..., y0T −y1T 6= 0. Moreover, when the time arrives to condition on y3, the
same phenomenon is going to be observed again. The solution is indeed unstable in
the sense that any (small) change in initial conditions have a permanent effect on
the solution.

It common that economists like to refer to this phenomenon (α = 1) as hysteresis.
In the literature on European unemployment, the point has been made that failure of
wages to respond properly to shocks to unemployment (in fact the long-run multiplier
of wages with respect to unemployment is often found to be close to zero ) may lead
to hysteresis in the rate of unemployment. The case of α = −1 is less common
in applications, but it is still useful to check the solution and dynamics implied by
(2.39) also in this case.

Panel c) of Figure 2.2 illustrates the unstable case by setting β0 +Bmx = 0.025
and α = 1 in (2.38), corresponding to for example 2.5% annual growth if yt is
a variable in logs. Actually there are two solutions. One takes y200 = 3.57 as
the initial period, and the other is conditioned by y201 = 3.59. Although there is
a relatively small difference between the two initial conditions in this example, the
lasting influence on the different initial values on the solutions is visible in the graph.

2.7.1.3 Explosive solution

When α is greater than unity in absolute value the solution is called explosive, for
reasons that should be obvious when you consult (2.39). In panel d) of Figure 2.2
the explosive solution obtained when setting β0 + Bmx = 0.025 and α = 1.05 in
(2.38) is shown. We plot the explosive solution over a longer period than the others,
in order to allow the explosive nature of the solution to become clearly visible in the
graph.

At this point it is worth recalling that everything we have established about the
existence and properties of solutions, have been based on making equation (2.28):

yt = β0 + β1xt + β2xt−1 + αyt−1 + εt

subject to the two simplifying assumptions: εt = 0 for t = 0, 1, ..., and xt = mx for
t = 0, 1.... Luckily, the qualitative results (stable, unstable or explosive solution) are
quite general and independent of which assumptions we make about the disturbance
and the x variable. However, any particular numerical solution that we obtain for
(2.28) is conditioned by these assumptions. For example, in the stable case with
0 < α < 1, if we instead of xt = mx for t = 0, 1.... set xt = 2mx for t = 0, 1...,
then both y∗ and the solution path from y0 to y∗ are affected. Hence the particular
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Figure 2.3: Solution of the consumption function in equation (2.19) for the period
1990(1)-2001(4). The actual values of log(Ct) are also shown, for comparison.

solutions that we obtain for ADL equations are conditioned by the values we specify
for the disturbances εt (t = 0, 1, ...), and the economic explanatory variables xt
(t = 0, 1...).

Regarding the disturbances, the common practice is to do exactly as we have
done above, namely to replace each εt by zero, the mean the disturbances. An
important exception is in a forecasting situation when a structural break has been
identified Forecasters then use non-zero disturbances in order to avoid unnecessary
poor forecasts.

For the explanatory variable, there are several possibilities depending on the
purpose of the analysis. For example, if the aim of the analysis is to investigate how
well the solution fits the behaviour of y over an historical period, we simply use the
observed values of x over the sample period. If the purpose is to produce a forecast
of y, we have to specify the future values taken by x in the forecast period. These
values are of course not observable and have to be forecasted themselves. In the
case with little information about future x values, one typically revert to the mean
of x, in order to at least condition the y forecasts on a representative value of x.

Figure 2.3 uses the empirical consumption function in equation (2.19) above to
illustrate a particular solution of an ADL model. The point here is to illustrate
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how well the solution fits the actual data over the sample period, so the solution is
conditioned by the actual observations for income. The figure shows the solution for
(the logarithm) of consumption over the period 1989(1)-2001(4) together with the
observed actual values of consumption over that period. The scale of the vertical axis
indicates that real private consumption expenditure has increased by a formidable
50% over the period, and the graph shows that this development is well explained
by the solution of the consumption function. That the solution is conditioned by the
true values of income, must be taken into account when assessing the close capture
of the trend-growth in consumption.

Also apparent from the graph is a marked seasonal pattern: consumption is
highest in the 3rd and 4th quarter of each year. Seasonality is a feature of many
quarterly or monthly time series. How to represent seasonality in a model is question
in its own right and cannot be answered in any detail within the scope of this book.
However the interested reader might note that in order to capture seasonality as
well as we do in the figure, we have included so called seasonal dummies, but for
simplicity, the estimated coefficient have been suppressed in equation (2.19).13

2.7.2 Simulation of dynamic models

In applied macroeconomics it is not always common to refer to the solution of a
dynamic model. The customary term is instead simulation. Specifically, economists
use dynamic simulation to denote the case where the solution for period 1 is used
to calculate the solution for period 2, and the solution for period 2 is in turn used
to find the solution for period 3, and so on. In the case of a single ADL equation
with one lag, which we have studied extensively above, dynamic simulation clearly
amounts to finding the solution of that model. Conveniently, the correspondence
between solution and dynamic simulation also holds for equations with several lags
and/or several explanatory variables, as well as for the systems of dynamic equations
that are used in macroeconomic practice. The dominance of simulation stems from
the fact that simulation offers an easy way of finding the solution in the cases where
the closed form algebraic solution is impractical.

Reflecting the practical usefulness of simulation in macroeconomics is the fact
that modern econometric software packages contain a wide range of built-in pos-
sibilities for simulation analysis, as well as rich possibilities for reporting of the
simulation results, in numerical or in graphical form. Depending on the purpose of
the simulation, it is custom to distinguish between three main types of simulation
analyses. These are: track-analysis, forecasting, and multiplier analysis.

When we do track-analysis, simulation is used to find how fell the solution of an
estimated macroeconomic model tracks the actual values of the endogenous variables
over the sample period) and figure 2.3 provides an example. Dynamic simulation
is also the practical way produce forecasts from dynamic models. However, a main

13Seasonal dummies are explained in any introductory textbook in econometrics. To reproduce
the detailed results underlying Figure 2.3, consult the file norcons.zip on the web page.
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complication that distinguishes a historical dynamic simulation from a dynamic fore-
cast is that, since observations of the x variable are only available for the historical
sample period (t = 1, 2, ...T ) they also need to be forecasted before we can simulate
yt for a H periods ahead. H is often referred to as the forecast horizon. Having
fixed a set of values xT+1, xT+2, ...,xT+H , the simulated values yT+1, yT+1, ..., yT+H ,
correspond to the solution based on the initial values xT , xT−1. and yT−1.

When forecasting, the determination of the future sequence x are is not at all a
trivial matter. Sometimes, the forecaster characterizes the sequence of x values as
representing a possible future, not necessarily the most likely future realizations of
x’s. In this case, the forecast is usually referred to as a scenario of the future, and the
forecaster often choose to illustrate two or more scenarios for the forecasted variable
y, corresponding to for example “high” and “low” future realizations of x. The other
main motivation for a forecasts is to obtain the most likely future development of
yT+j and xT+j , given the information available in period T . In this case, the equation
for yt has to be supplemented with an equation for xt, and the dynamic simulation
of that 2-equation model based on yT and xT (and knowledge of the parameters)
represent the forecast. Such forecasts are called conditional forecasts, because they
are conditioned by the history of the system consisting of the equations for yt and xt
up to period T . Another much used term is that the conditional forecast correspond
to rational expectations.

Finally, dynamic simulation is used to produce dynamic multipliers. In that
case we do two dynamic simulations: first, a baseline simulation using a baseline or
reference set of values of the x variable (often these are the historical values, or a
baseline forecast), and second, an alternative simulation based on an alternative (or
“shocked”) set of x values. As always, the initial condition has to be specified before
the solution can be found. Since the focus is on the effect of a change in x, the same
initial condition is used for both the baseline and the alternative simulation. If we
denote the baseline solution ybt and the alternative y

a
t , the difference y

a
t − ybt are the

dynamic multipliers.

We end this section by noting that care must be taken to distinguish between
static simulation, which is also part of the vocabulary used by macroeconomists,
and dynamic simulation which we have discussed so far. In a static simulation, the
actual (not the simulated) values for y in period t− 1 is used to calculate yt. Thus
the sequence of y’s obtained from a static simulation does not correspond to the
solution of the ADL model. Static and dynamic simulations give an identical result
only for the first period of the simulation period. Since, in practice, we use estimated
values of the model’s coefficient when we simulate a model, the resulting y−values
from a static simulation over the sample period are identical to the equation’s fitted
values.14

14Strictly speaking, this is only true for single equation models. If we consider a system of
simultaneous equations, the fitted values of a single endogenous variable are different form the
solved out values from a static simulation.
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2.8 Dynamic systems

In macroeconomics, the effect of a shock or policy change is usually dependent on
system properties. As a rule it is not enough to consider only one equation in order
to obtain the correct dynamic multipliers. Consider for example the consumption
function of section 2.2 where it was assumed that income (INC) was an exogenous
variable. This exogeneity assumption is only tenable given some further assumptions
about the rest of the economy: for example if there is a general equilibrium with
flexible prices and the supply of labour is fixed, then output and income may be
regarded as independent of Ct. However, with sticky prices and idle resources, i.e.,
the Keynesian case, INC must be treated as logically be considered as an endogenous
variable. Generally, because the different sectors and markets of an economy are
interlinked, the limitations of the single equation analysis we have considered so far
in this chapter is rather obvious.

Nevertheless, the discussion if the solution of a single ADL equation provides
essential background for understanding dynamic models, so our efforts so far are
not wasted. First, it is often quite easy to bring a system on a form with two
reduced form dynamic equations that are of the same form that we have considered
above. After this step, we can derive the full solution of each endogenous variable
of the system if we so want. Section 2.8.1, 2.8.3 and 2.8.4 show specific examples.
Second, in more complicated cases where a full analysis of the system is beyond us
(at least without the aid of computer simulation), it is still relatively easy to find
the short-run and long-run multipliers of the endogenous variables with respect to
changes in the exogenous variables, by drawing on the distinction between the short-
run and long-run version of the models that we introduced in chapter 1.4, and which
we re-state in section 2.8.2 below. Third, as already hinted, computer simulation
represents a practical way of obtaining the solution of systems of dynamic equations
with quantified coefficient values and known initial conditions, for i.e., the systems
of equations used in practice for forecasting and policy analysis, and the concepts
that we have introduced above are essential in the interpretation of the results from
such computer based simulation.

2.8.1 A dynamic income-expenditure model

We begin by showing how the analysis of the dynamic consumption function with is
changed when the assumption of exogenous income is replaced by an assumption of
endogenous income. For this purpose it is most practical to specify a consumption
function which is linear in variables, rather than being linear only in parameters as
we have used frequently above. Hence, the model is made up of a linear consumption
function

Ct = β0 + β1INCt + αCt−1 + εt, (2.44)

and a product market equilibrium condition

INCt = Ct + Jt, (2.45)
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where Jt denotes autonomous expenditure, and where INC is now interpreted as the
gross domestic product, GDP. We assume that there are idle resources (unemploy-
ment) and that prices are sticky, so that income is determined “from the demand
side”. The 2-equation dynamic system has two endogenous variables Ct and INCt,
while Jt and εt are exogenous.

To find the solution for consumption, substitute INC from (2.45), and obtain

Ct = β̃0 + α̃Ct−1 + β̃2Jt + ε̃t (2.46)

where β̃0 and α̃ are the original coefficients divided by (1−β1), and β̃2 = β1/(1−β1),
and ε̃t = εt/(1− β1).

Equation (2.46) is yet another example of an ADL model, so the theory of the
previous sections applies. For a given initial condition C0 and known values for the
two exogenous variables (e.g., {J1, J2, ..., JT}) there is a unique solution. If −1 <
α̃ < 1 the solution is asymptotically stable. The impact multiplier of consumption
with respect to autonomous expenditure is β̃2, while in the stable case, the long-run
multiplier is β̃2/(1− α̃). If the system (2.44) and (2.45) implies a stable solution for
Ct, there is obviously also a stable solution for INCt, meaning that we do not have
to derive the solution for INCt in order to check the dynamic stability of income.

Equation (2.46) is called the final equation for Ct. The defining characteristic of
a final equation is that (apart from exogenous variables) the right hand side only
contains lagged values of the left hand side variable. It is often feasible to derive a
final equation for more complex systems than the one we have studied here. The
conditions for stability of the system as a whole (i.e., all the endogenous variables are
asymptotically stable) is then expressed in terms of the so called characteristic roots
of the final equation. The relationship between α̃1, α̃2 and the characteristic roots of
the final equation goes beyond the scope of this course, but it can be mentioned that
a sufficient condition for stability of a final equation with second order dynamics (i.e.,
not only yt−1 but also yt−2 is part of the equation for yt) is that both α̃1 and α̃2 are
less than one. Section 2.8.5 below states these points in a more general framework.

2.8.2 The method with a short-run and long-run model

It is worth reminding ourselves about the analysis of dynamic models that was in-
troduced in chapter 1.4. When we are working with models with more than two
endogenous variables, or with two or more lags, we are often unable to derive the
full solution of the dynamic model, at least without the aid of the mathematical
algorithms provided by relevant computer programmes. However, by using the sim-
plified step-wise approach, we can still answer two important questions: i) What
are the short-run effect of a change in an exogenous variable, and ii) what are the
long-run effects of the shocks. The method, as we saw in chapter 1.4, amounted to
using two versions of the model: a short-run version, and a long-run version of the
model.

In the income-expenditure model the short-run model is given by (2.44) and
(2.45), where Ct and INCt are endogenous variables, Ct−1 is a predetermined ex-
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ogenous variable, and Jt and εt are exogenous variables. The long-run model is
defined for the situation of Ct = C, INCt = INC, Jt = J and εt = 0, and is written
as

C =
β0
1− α

+
β1
1− α

INC (2.47)

INC = C̄ + J (2.48)

In exactly the same manner as in chapter 1.4, the impact multiplier of a permanent
(or temporary) rise in Jt is obtained from the short-run model (2.44) and (2.45),
while subject to dynamic stability, the long-run multipliers can be derived from the
static system method (2.47)-(2.48). It is a useful exercise to check that the long-run
multipliers from the long-run model are the same as the ones you obtained from the
final equations of Ct and INCt.

2.8.3 The basic Solow growth model

Growth theory is often the economics student’s first encounter with a dynamic
model, and here we only briefly review the simplest Solow growth model using
the framework developed above.15 The first equation of the model is the macro
production function of the Cobb-Douglas type,

Yt = Kγ
t Nt

1−γ , 0 < γ < 1 (2.49)

where Yt is GDP in period t, Kt denotes the capital stock, and Nt is employment in
period t. In the basic version of them model we simply define Nt as the number of
employed persons, which in turn is identical to the size the population. Hence full
employment is assumed, and we abstract from variations in working time. The size
of the population is assumed to grow with a constant rate n:

Nt

Nt−1
− 1 = n, n ≥ 0 (2.50)

We have to be precise about the dating of the capital stock, since the third equation
of the model links the evolution of the capital stock to the flow of investment. In
accordance, with section (1.6) above, we define Kt as the amount of capital available
at the start of period t. We next assume that all saving, St, in period t is invested
so that the “law of motion” for the capital stock is

Kt = (1− δ)Kt−1 + St−1, 0 < δ ≤ 1 (2.51)

where δ is the rate of depreciation of capital, consistent with (1.13) in chapter 1. In
the Solow model, an essential assumption is that saving is proportional to income,
hence
15A good reference to both the basic version of the Solow model, and to the different extensions of

the model with e.g., technological progress is the textbook by Birch Sørensen and Whitta-Jacobsen
(2005). The basic Solow model is for example presented in Birch Sørensen and Whitta-Jacobsen
(2005, Chapter 3.2).
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St = sYt, 0 ≤ s < 1 (2.52)

where s is the fraction saved out of income in each period.
Let us first see what the steady state solution of this dynamic model looks like,

assuming that a unique and stable steady state solution exists. To formulate the
long-run mode /l, we first note that if we want to write the model in terms of variables
that are independent of time in steady state, we cannot use Y , N and K directly
since population is growing with rate n in steady state, by assumption. Instead, let
us make the initial guess that capital intensity kt = Kt/Nt is a variable that is a
constant k̄ in steady state. If this is true, the long-run model, i.e., the model for the
steady state takes the form

ȳ =
¡
k̄
¢γ (2.53)

k̄ =
1

(δ + n)
s · ȳ (2.54)

where GDP per capital is denoted y = Y/N , and ȳ is the steady state value of GDP
per capita. If (2.53) and (2.54) characterizes the steady state, we can combine the
two equations to obtain the following equation for ȳ

ȳ =

∙
1

(δ + n)
s · ȳ

¸γ
(2.55)

which shows that a permanent increase in the saving rate s has the following long-run
effect on GDP per capita:

d ln ȳ

d ln s
=

γ

1− γ
> 0, (2.56)

or, in derivative form:
dȳ

ds
=

ȳ

s

γ

1− γ
(2.57)

which says that a permanent increase in the saving rate has a positive long run effect
on GDP per capita, and that the effect is larger the larger ȳ is in the initial steady
state situation.

Next, we address the more demanding task of checking whether the long-run
model made up of (2.53) and (2.54) does indeed represent a stable steady state
solution of the Solow model (2.49)-(2.52). For that purpose we need to derive the
final equation for the dynamic system. We start with equation (2.51) and divide on
both sides by Nt−1:

Kt

Nt−1
= (1− δ)

Kt−1
Nt−1

+
St−1
Nt−1

.

On the left-and side, multiply by Nt/Nt, and use (2.50) and (2.52) to obtain:

kt(1 + n) = (1− δ)kt−1 + s yt−1 (2.58)
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where kt = Kt/Nt and yt = Yt/Nt, consistent with the variables of the long-run
model. From the production function (2.49): yt = kγt so that the dynamic equation
for the capital intensity variable kt becomes:16

kt =
1

(1 + n)

©
(1− δ)kt−1 + s kγt−1

ª
. (2.59)

If it were not for the last term on the right hand side in (2.59), this dynamic equation
for kt, which is also the final equation for the dynamic Solow system, would have
been an autoregressive (AR) model , with autoregressive parameter α = (1−δ)/(1+
n). In terms of economic interpretation this corresponds to the case of s = 0, so
that all income is consumed in every period. Since 0 < α < 1, it would then
follow that kt → k̄ = 0 in the asymptotically stable solution, and the interpretation
would be that from any given initial capital intensity k̄0, the combination of capital
depreciation and population growth would drive the capital intensity towards zero.
Consequently GDP per head is also zero. Hence, to avoid such a dismal steady
state, a strictly positive saving fraction is logically necessary. With 0 < s < 1, we
see that the second term on the right hand side of (2.59) is indeed essential. This
term represents the positive contribution from saving to the capital stock, and if
it large enough the capital intensity kt can grow from one period to the next in
spite of capital depreciation and population growth. Because of the nature of the
production function (2.49), this part of the final equation is a non-linear function of
kt , meaning that (2.59) become a non-linear autoregressive model, unlike the linear
models we make use of elsewhere in this book.

Despite the non-linearity, it is straight forward to understand the conditions for
stability in (2.59). First subtract kt−1 on both sides to obtain

(1 + n)∆kt = −(δ + n)kt−1 + s kγt−1 (2.60)

and note that
∆kt > 0 ⇐⇒ s kγt−1 > (δ + n)kt−1
∆kt < 0 ⇐⇒ s kγt−1 < (δ + n)kt−1
∆kt = 0 ⇐⇒ s kγt−1 = (δ + n)kt−1

(2.61)

The first line in (2.61) states that the capital intensity is growing in all time periods
where saving per capita is larger than the amount of saving required to compensate
for capital depreciation and population growth. Conversely, line two states that the
capital intensity is falling if saving per capita is less than that required amount.
Finally, ∆kt = 0 so that kt = kt−1 = k̄ when s kγt−1 = (δ + n)kt−1.

Figure 2.4 illustrates how the dynamics of the capital intensity variable kt drives
the Solow growth model. The two lines represent the first and second terms on the
right hand side of the final equation (2.60). The point where the two lines cross
defines the (non zero) steady state value k̄ of the capital intensity (on the horizontal
axis). The figure also illustrates dynamic stability. If the initial capital intensity k0
16 cf. equation (29) in Chapter 3.2 in Birch Sørensen and Whitta-Jacobsen (2005).



62 CHAPTER 2. LINEAR DYNAMIC MODELS
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k̄
→→ ← ←

Figure 2.4: Solow growth model: IIlustration of equation (2.60) for the case of
δ + n = 0.165) and s = 0.25 and γ = 0.5.
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is below k̄, the solution for capital intensity variable will be an increasing sequence
towards k̄ . Conversely, if k0 > k̄, the following periods will be characterized by
negative values of ∆kt, and the capital intensity will then approach k̄ from the
initially higher value (from the right on the horizontal axis).
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GDP per capita relative to 1900

Figure 2.5: GDP per capita relative tol1900. Annual Norwegian data 1830-2007.
GDP is in constant 2000 prices.

Figure 2.4 is based on the parameter values that are given in the figure caption,
and for values of kt that vary between 0.05 and 4. It usually helps the understanding
to draw a similar graph for some different values of the theoretical parameters. For
example: It is easy to see that a higher s than 0.25 will shift the intersection point
upwards along the line for capital depreciation and population growth. Likewise, a
higher value of γ increases the productivity of capital, meaning that k̄ and ȳ are
increased.

Figure 2.4 also shows that the non-linearity is most important when the initial
capital intensity is “far from” the steady state value, particularly on to the left of
the steady state value k̄ . For initial capital intensities that are close to the steady
state value, we can therefore approximate the exact dynamics of kt with the aid of a
linear dynamic model. In other words, local dynamic behaviour around the steady
state can be modelled using a linear model of the same type that we use elsewhere
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in the book. To illustrate this point, using the principles of linearization, a so called
first order approximation to (2.59) becomes

kt ≈
µ
1− δ

1 + n
+

s

1 + n
γk̄γ−1

¶
kt−1 + s

1− γ

1 + n
k̄γ (2.62)

which is an AR equation.17 Assuming that the autoregressive coefficient is between
0 and 1 (2.62) is consistent with dynamic stability in the neighborhood of the steady
state capital intensity k̄.

Solow’s growth model is the standard model for economic analysis with a time
horizon that goes beyond the length of the typical business-cycle of 5-10 years. In
order to be able to explain the facts of economic growth the basic model that we
have presented here obviously needs to be replaced by a model that incudes more
growth explaining factors. As one example, Figure 2.5 shows that GDP per capita in
Norway has grown by a factor of 16 since 1900, while the basic Solow model indicates
zero growth in steady state. However, we leave it to a course in economic growth
theory to show that inclusion of technological progress is one of the modifications
that help reconcile the theory’s predictions with growth statistics. Instead, we turn
to a model that applies the Solow model’s framework to a much shorter time horizon
than was originally intended.

2.8.4 A real business cycle model

The real business cycle (RBC) approach applies the framework of the Solow model
the business cycle. So unlike the Solow model, where the time period t typically
refers to a 5 or 10 years averages, the time period t in the RBC refers to years or
quarters of a year.

The Keynesian income-expenditure model and the RBC model are regarded a
contesting explanations of short-run macroeconomic fluctuations. This is because of
the differences in assumptions, in particularly regarding the labour market and un-
employment. In the Keynesian model, there is involuntary unemployment, the real
wage does not correspond to the market clearing real wage of a perfectly competitive
labour market, and the business cycle is regarded as disequilibrium phenomenon. In
the RBC model, there is no genuine involuntary unemployment. Instead, recorded
unemployment is regarded as a misnomer for intertemporal substitution of working
time for leisure, and the business cycle is an equilibrium phenomenon.

The first equation of the RBC model is the macro production function (2.49),
augmented by a technology variable At

Yt = Kγ
t (AtNt)

1−γ , 0 < γ < 1, (2.63)

and where we, because of the change of time horizon and the change in focus to
business-cycle fluctuations, change the interpretation of Nt from persons employed
to the total number of hours worked, i.e., the number of workers times the average
17Appendix B gives the details.



2.8. DYNAMIC SYSTEMS 65

length of the working day. This specification of the production function is referred
to as labour augmenting technical progress, since an increase in At implies that
GDP is increased without any increase in the capital stock (labour becomes more
productive).18 It is important in the following that technical progress is modelled as
the sum of two parts: one completely deterministic part and a second part which is
random. The deterministic part is a given rate of technological progress gA multi-
plied by time, which we write gAt, and the random part is denoted as,t. Hence, the
RBC model’s theory of technological progress is given by

lnAt = gAt+ as,t, 0 < gA < 1, (2.64)

where the random part is given by the autoregressive equation:

as,t = αas,t−1 + εa,t, 0 ≤ α < 1 (2.65)

where εa,t is a completely unpredictable technology shock. We can amalgamate the
two technology equations into one by lagging (2.64) one period, and then multiplying
by α on both sides of the lagged equation:

α lnAt−1 = αgA(t− 1) + αas,t−1. (2.66)

Subtraction of equation (2.66) from (2.64) gives

lnAt = αgA + gA(1− α)t+ α lnAt−1 + εa,t, (2.67)

which shows that technological progress lnAt is implied to follow an autoregressive
model augmented by a deterministic trend αgA(t− 1). We can re-write (2.67) as

lnAt − lnAt−1 = αgA + gA(1− α)t+ (α− 1) lnAt−1 + εa,t, (2.68)

and define a steady state as a situation where all shocks are zero, i.e., εa,t = 0 for
all t. Let ln Āt denote steady state productivity. From (2.67) with εa,t = 0, we note
that ln Āt−1 is given by

gA = αgA + gA(1− α)t+ (α− 1) ln Āt−1

or
ln Āt−1 = −gA + gAt.

since ln Āt = gA + ln Āt−1 we have

ln Āt = gAt (2.69)

showing that (2.64) can alternatively be written as

lnAt = ln Āt + as,t, (2.70)

18We adopt more or less the same assumptions as in the expositition in Birch Sørensen and
Whitta-Jacobsen (2005, Chapter 19.4).
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as long as the restriction on gA is observed.
The RBC model makes uses also of the saving equation (2.52), and the capital

evolution equation (2.51), which we however simplify by setting δ = 1, meaning that
capital equipment lasts for only one period, so that

Kt = St−1. (2.71)

It is the infallible mark of RBC models that the labour market is assumed to be
in equilibrium in each period. Labour supply, NS

t , is a function of the relative wage
wt/w̄t:

NS
t = N̄(

wt

w̄t
)�, � > 0. (2.72)

where w̄t is the steady state wage and � is the labour supply elasticity. When
the wage is equal to the steady state wage, labour supply is also equal to its steady
state value. Though simple in appearance, equation (2.72) is representing optimizing
behaviour by households and individuals: They choose to supply labour in excess of
the long-run level determined by demography and sociological norms and legislature
when the real wage wt is higher than the steady state real wage w̄t, and to substitute
labour for leisure in times when the real wage is low relative its long run level. For
simplicity of exposition we set N̄ = 1 in the following, since in (2.72) this is merely
a choice of units.

Labour demand is obtained by assuming optimizing behaviour by a ‘macro pro-
ducer’, and the marginal product of labour is therefore set equal to the real wage:

wt = (1− γ)

µ
Kt

AtNt

¶γ

At = (1− γ)

µ
Yt
Nt

¶
. (2.73)

The assumption of equilibrium in the labour market means that NS
t = Nt, and we

can solve (2.72) and (2.73) for real wage and for employment. First, note that from
(2.72):

wt = N
1
�
t w̄t (2.74)

Next, note that the ratioKt/AtNt in (2.73) is a generalization of the capital intensity
variable kt of the Solow model. The generalization is due to the inclusion of the
productivity At variable in the RBC production function, hence we define kA,t =
Kt/AtNt as the productivity corrected capital intensity. Moreover, with reference
to the Solow model above, we define k̄A as the steady state value of the productivity
corrected capital intensity. The corresponding steady state real wage, from (2.73),
is

w̄t = (1− γ)k̄γAĀt. (2.75)

Remember that both w̄t and k̄A refer to the situation with εa,t = 0 (there are no
shocks in the steady state). Using (2.74) and (2.75) we obtain

wt = N
1
�
t (1− γ)k̄γAĀt. (2.76)
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A this point we take the natural logarithms on both sides of (2.73), and (2.76):

lnwt = ln(1− γ) + lnYt − lnNt,

lnwt =
1

�
lnNt + ln((1− γ)k̄γAĀt).

Using these two expressions to solve for lnNt gives

lnNt =
�

1 + �

©
lnYt − ln(k̄γAĀt)

ª
. (2.77)

Substitution of the this expression together with (2.71) and (2.52) into the log of
the production function, (2.63), gives

lnYt = γ ln(sYt−1) + (1− γ)

µ
�

1 + �

©
lnYt − ln(k̄γAĀt)

ª¶
+ (1− γ) lnAt

1 + γ�

1 + �
lnYt = γ ln s+ γ ln(Yt.−1) + (1− γ)

µ
−�
1 + �

ln(k̄γAĀt)

¶
+ (1− γ) lnAt

and eventually

lnYt =
γ(1 + �)

1 + γ�
ln s+

γ(1 + �)

1 + γ�
lnYt−1 −

(1− γ)�

1 + γ�
ln(k̄γAĀt) +

(1− γ)(1 + �)

1 + γ�
lnAt.

(2.78)
Note that this is the final equation for lnYt in the RBC model: it expresses lnYt by
its lag and by exogenous variables. Noting that ln Āt and lnAt are linked through
equation (2.70) above, and that ln Āt = gAt in (2.69) above, the final equation for
lnYt can be written as

lnYt =
γ(1 + �)

1 + γ�
ln s−(1− γ)�

1 + γ�
ln(k̄γA)+

γ(1 + �)

1 + γ�
lnYt−1+

(1− γ)

1 + γ�
gAt+

(1− γ)(1 + �)

1 + γ�
as,t

(2.79)
where as,t follows the autoregressive process in equation (2.65) above.

There are several important notes to be made about (2.79). First, dynamic
stability hinges on the autoregressive parameter being less than one in magnitude.
We see that in (2.79) the stability condition is satisfied, since

γ(1 + �)

1 + γ�
=

γ(1 + �) + 1− 1
1 + γ�

= 1− 1− γ

1 + γ�

is a number between 0 and 1, based the assumptions of the model. Second, given
stability, there is a deterministic steady state growth path for Yt with growth rate
gA. Third, and heuristically speaking, the only difference between (2.79) and the
implied equation for the log of the steady state GDP, ln Ȳt, is that the equation for
ln Ȳt does not contain the stochastic technology shock term.19 Hence, the equation
for ln Ȳt is:

ln Ȳt =
γ(1 + �)

1 + γ�
ln s− (1− γ)�

1 + γ�
ln(k̄γA) +

γ(1 + �)

1 + γ�
ln Ȳt−1 +

(1− γ)

1 + γ�
gAt, (2.80)

19This can be made precice by taking the mathematical expectation of (2.79).
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meaning that the dynamics of the logarithm of the output gap, defined as (lnYt −
ln Ȳt), is given by the autoregressive equation:

(lnYt − ln Ȳt) =
γ(1 + �)

1 + γ�
(lnYt−1 − ln Ȳt−1) +

(1− γ)(1 + �)

1 + γ�
as,t. (2.81)

This equation shows that, according to the RBC model, the typical evolution of GDP
over time will be characterized by periods of economic booms (positive output-gap),
and troughs (negative output-gap). This is implied even if the initial situation is
characterized by lnYt = ln Ȳt, and the explanation is that there is a flow of technology
shocks, that are propagated into persistent deviations from the steady state by saving
and investment dynamics, and by workers willingness to supply more labour in good
times, and to substitute work by leisure in economic downturns. Hence, unlike
the Keynesian income-expenditure model, periods with below capacity output, and
below average recorded employment, is an equilibrium phenomenon in the RBC
model–it is a theory of equilibrium business cycles.
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Figure 2.6: A simultated series of the logarthm of the output gap using equation
(2.81) and (2.65) with ω = 0.1, � = 4 and γ = 0.5. The standard deviation of the
technology shock variable εt is set to 0.01.

The graph in figure 2.6 shows the solution of (2.81) and (2.65), using the values
of the theoretical parameter that are given in the caption to the figure. The solution
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assumes that the output-gap is zero in the initial year, which we have set to “1900”
in the simulation and in the graph. Due to negative productivity shocks in the first
years of the solution period, and propagation, the output-gap is negative for the
first 10 years, before there is a brief upturn after 12-13 years. The first more lasting
boom starts in the mid “1920’s” and lasts for more than 25 years. It is followed by
a long period of GDP below steady state. At the end of the solution period, the
distance between the waves of high income generation is shorter again.

It gives rise to thought that a simple RBC model can generate economic upturns
and downturn that are of so long duration as shown in figure 2.6. One lesson
may be that one should not jump to conclusions about economic disequilibria or
unbalances in the economy on the basis of 10 years of above or below trend economic
performance–further analysis is required to determine whether the business cycle
is a equilibrium or disequilibrium phenomenon.

2.8.5 The solution of the bivariate first order system (VAR)

The income-expenditure model contain first order dynamics because of the lagged
term in the consumption function. More generally, if we consider two equations in
the two variables xt and yt, both xt−1 and yt−1 appear in each of the equations:

yt = α11yt−1 + α12xt−1 + εyt, (2.82)

xt = α21yt−1 + α22xt−1 + εxt. (2.83)

where αij are constant coefficients, and εyt, εxt are two random variables, both with
mean zero.

The two equations (2.82) and (2.83) define what is known in the literature as a
vector autoregressive model, or VAR. The reason for this name is that if we define
the vectors zt = (yt, xt)0, and εt = (εyt, εxt)0, and a matrix

α =

µ
α11 α12
α21 α22

¶
,

the vector zt is seen to follow a first order autoregressive model:

zt = α zt−1 + εt. (2.84)

Often in economics, the VAR needs to be extended by exogenous explanatory vari-
ables, Hence if we let wt represent an explanatory variable with mean, mw 6= 0, and
define the coefficient vector β = (β10, β20), the vector autoregressive distributed lag
model (often called VAR-X) is given by

yt = α11yt−1 + α12xt−1 + β10wt + εyt, (2.85)

xt = α21yt−1 + α22xt−1 + β20wt + εxt. (2.86)

or
zt = α zt−1 + βwt + εt. (2.87)
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in matrix notation.
The short-run model in this case is clearly given by (2.85) and (2.86)–or by

(2.87) if matrices are used.. The impact multipliers are given by the vector β. If a
stable solution exists, the long-run model is given by

y = α11y + α12x+ β10mw, (2.88)

x = α21y + α22x+ β20mw. (2.89)

where y and x denote the two steady state values of the endogenous variables.
By solving the two simultaneous equations (2.88) and (2.89) we find the long-run
solution as

y =
(α22 − 1)β10 − α12β20

α11 + α22 − α11α22 + α12α21 − 1
mw, (2.90)

x =
−α21β20 + (α11 − 1)β10

α11 + α22 − α11α22 + α12α21 − 1
mw. (2.91)

The long-run multipliers are the derivatives of (2.90) and (2.91).
A full discussions of the stability conditions for the bivariate first order system

goes beyond the scope of this course. But it is possible to gain important insight
by deriving the final equation for yt. From the single equation case, we know that
stability hinges on the autoregressive part of the model, not on the distributed lag
part. The same is true here: what matters is the dynamic interdependence between
the two endogenous variables. Hence, to save notation, and we can find the final
equation for the case of β10 = β20 = 0 and εyt, = εxt = 0. First note that (2.82) and
(2.83) also holds for period t− 1.

yt−1 = α11yt−2 + α12xt−2

xt−1 = α21yt−2 + β21xt−2.

From the first equation obtain

xt−2 =
−1
α12

(α11yt−2 − yt−1),

and substitute this for xt−2 in the second equation to obtain.

xt−1 = α21yt−2 −
α22α11
α12

yt−2 +
α22
α12

yt−1.

The left hand side of this equation can be substituted for xt−1 in equation (2.82) to
give the final equation for yt:

yt = (α11 + α22)yt−1 + (α12α21 − α11α22)yt−2. (2.92)

Since this is an autoregressive equation with two lags it is immediately clear that
for example a11 < 1 by itself does not guarantee the existence of a stable solution.
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Conversely, it is possible that the system is dynamically stable even when for example
α11 = 1, i.e., if the other coefficients “contributes enough to stability”. The necessary
and sufficient conditions for stability can be shown to be (see Sydsæter and Berck
(2006, p 66, equation 10.18)):

1− (α12α21 − α11α22) > 0

1− (α11 + α22) + (α12α21 − α11α22) > 0

1 + (α11 + α22) + (α12α21 − α11α22) > 0.

Inspection of these conditions show that they are in terms of the coefficients of the
final equation (2.92). As hinted above, the conditions for stability are seen to be
fulfilled if both those coefficients are less than one.

Exercises

1. Use Table 2.1 to check the multipliers reported in Table 2.2.

2. Show that, after setting et = 0 (for convenience), MPC ≡ ∂Ct/∂INCt =

k · β1INC
β1−1
t , where k = exp(β0).

3. Confirm that in the case of a distributed lag model, the two first multipliers of
a temporary change are equal the coefficients of xt and xt−1 respectively, while
δj = 0 for j = 2, 3,. . . . Show also that in the case of a permanent change,
δlong−run is equal to β1 + β2.

4. Using the definitions of dynamics, in what sense would you say that the Dif-
ferenced data model of section 2.3 qualifies as a dynamic model, and in which
sense does it (rather) qualify as a static model?

5. In a dynamic system with two endogenous variables, explain why we only need
to derive one final equation in order to check the stability of the system.

6. In the model in section 2.8, derive the final equation for INCt. What is the
relationship between the demand multipliers that you know from Keynesian
models, and the impact and long-run multipliers of INC with respect to a one
unit change in autonomous expenditure?

7. Formulate a dynamic model of the nominal exchange rate which is consistent
with the PPP hypothesis holding as a long-run proposition.

8. Let σt denote the real exchange rate period t. Assume that the time period is
annual, and that we are given the following ADL model which explains σt:

σt = β0 + β1xt + β2xt−1 + ασt−1 (2.93)

xt represents an exogenous variable. (For simplicity, the random disturbance
εt has been omitted).Economists have suggested that after a shock, the real
exchange rate can “overshoot” its (new) long-run level.
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(a) With reference to (2.93), formulate a precise definition of overshooting.

(b) Illustrate the concept by drawing graphs (by hand or computer) of dy-
namic multipliers which are consistent with both overshooting with no-
overshooting.

(c) Give one example of specific parameter values which gives rise to over-
shooting, and of another specific set which does not imply overshooting.
Formulate a definition of overshooting that you find meaningful in the
light of (2.93)

9. Figure 2.3 in the text shows a solution for ln(Ct) which trends upwards. This
may indicate an unstable solution. Assume that you did not have access to
the value of α in the consumption function, only to Figure below 2.7. Why
does this figure indicate that the solution is in fact stable?

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
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Figure 2.7: 5 solutions of the consumption function in 2.19, corresponding to differ-
ent initial periods: 1989(4), 1990(4) ,1992(4). 1995(4) and 1998(4).

10. Download the file norcons.zip from the web page. Use the instruction pro-
vided in the included .txt file to replicate the dynamic multipliers in Figure
2.1.



Chapter 3

Wage-price dynamics

Theories of wage formation and of price setting are important in
macroeconomics since they represent the supply-side of macroeconomic
models. In this chapter we discuss three alternative models of the supply
side: The wage bargain model, the Phillips curve and the New Keynesian
Phillips curve. We note that the two first models are consistent with
perception that firms and their (organized or unorganized) workers are
engaged in a partly cooperative and partly conflictual sharing of the rents
generated by the operation of the firm. Despite this common ground,
the models have notably different dynamic properties, and have different
policy implications. In the standard New Keynesian Phillips curve model
there is no role for trade unions. That theory instead places singular
emphasis on firms’ forward-looking behaviour.

3.1 Introduction

In economics the term ‘inflation’ generally describes the prevailing rate at which the
prices of goods and services are increasing. It is commonplace that all prices tend
to rise at broadly the same rate, because, when prices of domestic goods are rising,
this will generally be true also of wages, and of the price of imported goods. This is
because inflation in one sector of the economy permeates rapidly into other sectors.
The phrase, a ‘high rate of inflation’ therefore usually describes a situation in which
the money values of all goods in an economy are rising at a fast rate.

History shows many examples of countries which have been hit by extremely
high rates of inflation, so called hyperinflation. Any such episode is a result of crisis
and disorganization in the economic and political system of a country, and of a
breakdown in the public trust in the country’s monetary system. The typical case
is however that inflation can be moderately high for long periods of time without
doing serious damage to the stability of monetary institutions.

Nevertheless, even if we set aside the phenomenon of hyperinflation, it is generally
agreed that a high and volatile inflation rate is a cause of concern, and towards the
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end of last century, the governments of the “Western world” invested heavily in
curbing inflation. Institutional changes took place (crushing of labour unions in
the UK, revitalization of incomes policies in Norway, a new orientation of monetary
policy, the European Union’s stability pact, etc.), and governments also allowed
unemployment to rise to level not seen since the 2WW.

Was all this necessary, or were there other ways to curb inflation that would
have meant a lower toll in terms of unemployment? Finally, given that inflation has
now become a prime target of economic policy, what is the inflation outlook and
how can inflation be controlled using the policy instruments that are recognized as
legitimate in liberalized economies? Answers to any of these important issues are
necessarily model dependent. By model dependency we mean that, before the answer
is given, a view has been formulated, either explicitly or implicitly, about the major
determinants of inflation and about which instruments are available for controlling
inflation, and so forth. In this chapter we therefore discuss inflation models.

It is a well known fact that prices influence each other: wages follow the cost
of living index, which is based on prices on tradable and non-tradable goods, which
in their turn (and to varying extent) reflect labour costs that are determined by
wage settlements of the past. Hence the ‘inflation spiral’ has a dynamic structure
that results from the interaction of several markets, where the markets for labour
and goods are perhaps the two most important. Models of the dynamic structure of
wage and price setting are therefore of greatest importance, and they represent an
area where the modelling concepts of chapter 2 are indispensable.

In this chapter, we present two important models of wage and price setting
behaviour that are relevant to the inflation process of small open economies: the
bargaining model, section 3.2.4, and the Phillips curve model, section 3.3. The main
premise of the bargaining model is that firms and their (organized or unorganized)
workers are engaged in a partly cooperative and partly conflictual sharing of the
rents generated by the operation of the firm. In Norway, a system of bargaining
based wage setting has been the framework both for analysis and policy decisions
for decades.

The Phillips curve is covered by every textbook in macroeconomics, and in sec-
tion 2.4.2 above we have already introduced a Phillips curve relationship, as an
example of how ADL models are applied in macroeconomics. In this chapter, we
give a fresh lick to the Phillips curve by comparing it with the bargaining model
of inflation. We show that the Phillips curve can be seen as a special case of the
richer dynamics of the bargaining model, see section 3.4. The chapter also present
some empirical evidence from the Norwegian economy, see section 3.5. Which model
receives most support from the data? The Phillips curve or the bargaining model?

In the final section of the chapter we give an appraisal of the new Keynesian
Phillips curve, which in a short period of time has become an important model
of the supply side in the models used to guide monetary policy, and which also is
integrated in the dynamic stochastic general equilibrium models, DSGEs.
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3.2 Wage bargaining and incomplete competition.

In the course of the 1980s interesting developments took place in macroeconomics.
First, the macroeconomic implications of imperfect competition with price-setting
firms were developed in several papers and books.1 Second, the economic theory
of labour unions, pioneered by Dunlop (1944), was extended and formalized in a
game theoretic framework, see e.g., Nickell and Andrews (1983), Hoel and Nymoen
(1988). Models of European unemployment, that incorporated elements from both
these developments, appeared in Layard and Nickell (1986), Layard et al. (1991),
and Lindbeck (1993).

We refer to the overall framework as the Incomplete Competition Model (ICM)
as in Bårdsen and Nymoen (2003) or, interchangeably, as the wage curve framework
(as opposed to for example the Phillips curve model). Incomplete competition, is
particularly apt since the model’s defining characteristic is the explicit assumption of
imperfect competition in both product and labour markets.2 The ICM was quickly
incorporated into the supply side of macroconometric models, see Wallis (1993,
1995), and purged European econometric models of the Phillips curve, at least until
the arrival of the New Keynesian Phillips curve late in the 1990s (see below).

Time does not play an essential role in the standard bargaining models. Although
the theory is sometimes presented with reference to bargaining stages, real calendar
time is not an explicit variable in the model. Hence, the interpretation of the wage
equations rationalized by these theories is that they represent hypotheses about
the steady state. In line with this interpretation, and following the approach to
dynamics presented in the first two chapters, we first present the bargaining model
of wage setting as a theory of the steady state in section 3.2.1, and then present the
full equilibrium correction model in section 3.2.2.

3.2.1 A bargaining theory of the steady state wage

Since the focus of the book is the small open economy, we first establish the con-
ceptual distinction between a tradables sector where firms act as price takers, ei-
ther because they sell most of their produce on the world market, or because they
encounter strong foreign competition on their domestic sales markets, and a non-
tradables sector where firms set prices as mark-ups on wage costs. There is mo-
nopolistic competition among firms in this sector. The two sectors are dubbed the
exposed (e) and sheltered (s) sectors of the economy.

We first need to establish some notation: Let Qe and Qs denote the producer
prices in the two sectors. We assume that the consumer price index P is a weighted
average of the two prices:

P = Qφ
sQ

(1−φ)
e 0 < φ < 1 (3.1)

1For example., Bruno (1979), and Blanchard and Kiyotaki (1987), Bruno and Sachs (1984) and
Blanchard and Fisher (1989, Chapter 8)

2The ICM acrynom should not be taken to imply that the Phillips curve contain perfect com-
petition, though.
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where φ is a coefficient that reflects the weight of non-traded goods in private con-
sumption,3. More realistically, we could add a third consumption good which is not
produced domestically, but with the cost of a more complicated notation.

Due to monopolistic competition, the steady state price in the sheltered sector
is proportional to the wage level Ws in that sector:

Qs = �
Ws

As
. (3.2)

As is the average labour productivity. It is defined as As = Ys/Ls where Ys denotes
output (measured as value added) in the non-tradable or sheltered sector, and Ls

denotes labour input (total number of hours worked). The parameter � is determined
by the elasticity of demand facing each firm i with respect to the firm’s own price.
It is a common to assume that the elasticity is independent of other firms prices,
and that it is identical for all firms. It can be shown that if it is assume that the
absolute value of the elasticity of demand is larger than unity, then � > 1 as well,
and for that reason, � is can be referred to as the price mark-up coefficient on wages.

In the two equations (3.1) and (3.2), Qe is by assumption exogenous (e-sector
firms are price takers), and As is also exogenous and represents a technological trend.
The wage level in the sheltered sector is determined by the following equation:

Ws =We (3.3)

saying that the sheltered sector wage is proportional to the wage in the exposed
sector of the economy. To save notation, the proportionally factor has been set
equal to unity.

The hourly wage level We is determined by bargaining between labour unions
and organizations representing firms. We define real profits, , asY

= Ye −
We

Qe
Le = (1−

We

Qe

1

Ae
)Ye.

Over the wage bargaining time horizon we assume, for simplicity that output Ye is
equal to the capacity level. In this perspective, is possible that varying profitability
results in lower or increased capacity, hence we assume that Ye is a non-increasing
function of real unit labour costs:

Ye = Ye(
We/Qe

Ae
), Y 0e ≤ 0. (3.4)

We assume that the wage We is settled in accordance with the principle of maxi-
mizing the Nash-product:

(ν − ν0)
fΠ1−f (3.5)

3For reference, due to the log-form, φ = xs/(1− xs) where xs is the share of non-traded goods
in consumption.
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where ν denotes union utility and ν0 denotes the fall-back utility or reference utility.
The corresponding break-point utility for the firms has already been set to zero in
(3.5), but for unions the utility during a conflict (e.g., strike, or work-to-rule) is
non-zero because of compensation from strike funds. Finally f is represents the
relative bargaining power of unions.

Union utility depends on the consumer real wage of an employed worker and the
aggregate rate of unemployment, thus ν(We

P , U, Zν).4 The partial derivative with
respect to wages is positive, and negative with respect to unemployment (ν 0W > 0
and ν0U ≤ 0). Zν represents other factors in union preferences.

The fall-back or reference utility of the union depends on the overall real wage
level and the rate of unemployment, hence ν0 = ν0(

W̄
P , U) where W̄ is the average

level of nominal wages which is one of factors determining the size of strike funds. If
the aggregate rate of unemployment is high, strike funds may run low in which case
the partial derivative of ν0 with respect to U is negative (ν00U < 0). However, there
are other factors working in the other direction, for example that the probability of
entering a labour market programme, which gives laid-off workers higher utility than
open unemployment, is positively related to U . Thus, the sign of ν00U is difficult to
determine from theory alone. However, we assume in following that ν 0U − ν00U < 0.

With these specifications of utility and break-points, the Nash-product, denoted
N , can be written as

N =

½
ν(
We

P
,U,Zν)− ν0(

W̄

P
,U)

¾f ½
(1− We

Qe

1

Ae
)Ye

¾1−f
or

N =

(
ν(
Wq
P
Qe

, U, Zν)− ν0(
W̄

P
,U)

)f ½
(1−Wq

1

Ae
)Ye

¾1−f
where Wq =We/Qe is the producer real wage.

We assume that (3.1), (3.2) and (3.3) are taken into account during the bargain-
ing. Note that P can be written in terms of Wq:

P =

µ
�
We

Qe

¶φ

Qe

µ
1

As

¶φ

=Wφ
q Qe

µ
�

As

¶φ

, (3.6)

and that the two relative prices P/Qe and W̄/P are also functions of the real wage
Wq:

P

Qe
=Wφ

q

µ
�

As

¶φ

(3.7)

4This formulation implies that union utility is in terms of the pre-tax real wage, and that
changes in the income tax rate has no influence on wage setting. The evdidence is consistent with
this formulation, broadly speaking, although there are many caveats, including the many problems
of measuring average and marginal tax rates at the aggregate level..
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W̄

P
=

We³
We
Qe

´φ
Qe

³
�
As

´φ = We

Qe³
We
Qe

´φ ³
�
As

´φ = Wq
1−φ³
�
As

´φ (3.8)

Using (3.6)-(3.4), the Nash-product N can be written as:

N =

(
ν

Ã
W 1−φ

q Aφ
s

�φ
, U, Zν

!
− ν0

Ã
W 1−φ

q Aφ
s

�φ

!)f ½µ
1− Wq

Ae

¶
Ye

µ
Wq

Ae

¶¾1−f
(3.9)

The first order condition for a maximum is given by NWq = 0 which defines the
bargained real wage W b

q implicitly as

W b
q = F (Ae, As,f, U, Zν), (3.10)

subject to the usual second order conditions for a maximum.
By direct inspection of the Nash-product we see that a one percentage exogenous

increase inAe leads to a one percentage increase inW b
q , meaning that elasticity ofW

b
q

with respect of Ae is 1. Moreover, since bargaining is about the nominal wage, and
Qe is the exogenous foreign price level, we can write the solution for the bargained
nominal wage W b

e

W b
e = AeQeG(As,f, U, Zν). (3.11)

The expected non-negative sign of the partial derivative of the G function with
respect to U can be shown to depend on the specification of the utility functions. In
a wider interpretation, union bargaining power f is negatively related to U , meaning
that the total derivative of W b

e with respect to U is negative even though the partial
derivative might be positive.

By choosing a log-linear functional form as an approximation to (3.11), we can
write

wb
e = me0 + ae + qe + γe1u, γe1 ≤ 0 (3.12)

where wb
e = ln(W

b
e ), and ae, qe and u likewise denote the logs of the corresponding

variables in (3.11). For simplicity, we regard As, and Zv as constants, and they are
therefore subsumed in me0. Equation (3.12) represent our hypothesized long-run or
steady state relationship for e-sector wages. For completeness we also express the
relationships (3.1), (3.2) and (3.3) in logarithmic form:

p = φqs + (1− φ)qe, 0 < φ < 1, (3.13)

ws = wb
e, (3.14)

qs = ln(�) + ws − as. (3.15)

The long-run model consists of (3.12)-(3.15). The four equations determine wb
e,ws, qs

and p. The exogenous variables are ae, qe and u. The next question to ask is whether
this steady state is dynamically stable. As we have explained in chapter 2, the answer
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to this question depends on whether the wage level in period t, wet, approaches wb
e

in the case where the initial situation is characterized by disequilibrium: we0 6= wb.
However, before we leave the static wage bargaining model, it is worth making a

couple of remarks about the generality of equation (3.12). First, as noted above, the
derivation of equation (3.12) is based on the assumption that As is a constant. This
is a non-trivial simplification since realistically there is a trend like productivity
increase in the sheltered sector as well. If we for a minute consider variations in
As, it is easy to see that the impact on wb

e is negative: A one percent increase in
the sheltered sector productivity level reduces the price level P and so “allows” the
unions to settle for a lower nominal wage without any reduction on the consumer
real-wage. Hence, in our framework, the elasticity of W b

q with respect to As is
negative. The assumption that drives this result is that unions acknowledge that
the consumer price level is going to be affected by wage increases, i.e., we have
substituted equation (3.6) into the Nash-product. In most other derivations of the
bargaining wage, P is taken to be an exogenous variable. If we had adopted this
alternative assumption, a relationship like (3.12) would again emerge, but with a so
called wedge variable (p− qq) as an additional variable on the right hand side.5

A second, less technical remark, concerns how we have modelled output, Ye.
Above we made the assumption that Ye is identical to the capacity of the industry,
which is not unreasonable in the time perspective of a steady state, and that capacity
is a function of the wage-share. A more conventionally approach, which requires
that the time perspective is of the short-run and that the capital stock is fixed,
models π as a function of the real wageWq, because of short-term profit maximizing
behaviour.6 With this assumption, the resulting equation for the bargained wage
does not change qualitatively from what we have in equation (3.12).

Finally, one might consider monopolistic competition also among e-sector firms.7

In this formulation, e-sector firms face downward sloping, but potentially very flat,
demand curves. Since the formulation above, corresponds to a situation with exactly
horizontal demand curves, it is perhaps not surprising that the Nash solution with
monopolistic e-sector forms also implies an equation like (3.12).

3.2.2 Wage bargaining and dynamics

Clearly, it is the ambition of the bargaining model to explain wage dynamics, not
just the development of wages in a hypothetical steady state situation. From the
discussion in the chapter 2, this extension of the framework can be achieved by
integrating (3.12) in an autoregressive distributed lag model, ADL model which
is dynamically stable. These ideas can be represented with the aid of the error
correction transformation that was also introduced in chapter 2. Thus, we assume

5The reason for the name “wedge” is that p− qe makes out the difference (the wedge) between
the (logs) of the consumer real wage and the producer real wage.

6See Rødseth (2000, Chapter 5.9).
7See Bårdsen et al. (2005a, Ch 5.2).
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that wet is determined by the dynamic model

wet = β0 + β11mct + β12mct−1 + β21ut + β22ut−1 + αwet−1 + εt. (3.16)

Compared to the ADL model in equation (2.28), there are now two explanatory vari-
ables (“x-es”). The first variable, mct, is the sum of the logarithms of productivity
and product price: mct = aet + qet (we will explain the choice of acronym “mc”
in the next section). The second exogenous explanatory variable in the ADL for
e-sector wages is the logarithm of the rate of unemployment, ut. To distinguish the
effects of the two variables, we have added a second subscript to the β coefficients.
Of course, the result from the bargainin model above, namely that qe and ae have
the same effect on the steady state wage level is not the same as saying that they
also have identical effects on the wage in any given period. The use of the combined
variable mct in (3.16) therefore represents a simplification of the dynamics. This
simplification does not represent any loss of generality though.

The endogenous variable in (3.16) iswet. As explained above,mct is an exogenous
variable which displays a dominant trend due to both productivity growth and
foreign price growth. The rate of unemployment is also exogenous in the model.

The assumed exogeneity of unemployment is not grounded on realisms, since re-
sponses in unemployment to wage changes clearly represent a corrective mechanisms
which helps stabilize the wage level around its steady state path. However, it is in-
teresting to study the case of exogenous unemployment first, since we will then see
which stabilizing mechanisms in wage formation are at work even at a constant and
exogenous rate of unemployment. This is a thought provoking contrast to “natural
rate models” of wage dynamics which dominates the macroeconomic policy debate,
and which takes it as a given thing that unemployment has to adjust in order to
bring about constant wage growth and, eventually, stable inflation.8 We turn to this
theory in section 3.3 below.

If we apply the same error-correction transformation as in chapter 2.5, we obtain:

∆wet = β0 + β11∆mct + β21∆ut (3.17)

+(β11 + β12)mct−1 + (β21 + β22)ut−1 + (α− 1)wet−1 + εt

For the bargaining theory to be a realistic model of long term wage behaviour, it
is necessary that (3.16) has a stable solution. Since wages usually show a rather
smooth evolution through time we state the stability condition as

0 < α < 1, (3.18)

thus excluding negative values of the autoregressive coefficient. Hence, subject to
the stability condition in (3.18), equation (3.17) can be written as

∆wet = β0 + β11∆mct + β21∆ut (3.19)

− (1− α)

½
wet−1 −

β11 + β12
1− α

mct−1 −
β21 + β22
1− α

ut−1

¾
+ εt.

8See Bårdsen et al. (2005a, Ch 3-6) for an exposition.
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To reconcile this with the steady state relationship (3.12), we define

γe,1 =
β21 + β22
1− α

,

saying that the elasticity of wb with respect to the rate of unemployment is identical
to the long—run multiplier of the actual wage wet with respect to ut, and then impose
the following restriction on the coefficient of mct−1:

β11 + β12 = (1− α) (3.20)

since (3.12) implies that the long-run multiplier with respect to mc is unity. Then
(3.19) becomes

∆wet = β0 + β11∆mct + β21∆ut (3.21)

−(1− α) {wet−1 −mct−1 − γe1ut−1}+ εt

which is an example of the homogenous ECM of section 2.3. The short-run multiplier
with respect to mct is of course β11, which can be considerably smaller than unity
without violating the long-run relationship (3.12).

The formulation in (3.21) is an equilibrium correction model, ECM exactly be-
cause the term in brackets captures that wage growth in period t partly corrects last
period’s deviation from the long-run equilibrium wage level. We can write it as

∆wet = β
0
0 + β11∆mct + β21∆ut (3.22)

−(1− α)
n
we − wb

e

o
t−1

+ εt

where wb
e is given in (3.12) and β

0
0 is given as β

0
0 = β0 − (1− α)me0.

You should check that the derivations above parallel those given in chapter 2,
equation (2.31)-(2.34) in particular. Hence the following equation is equivalent to
(3.21) and (3.22)

∆wet = β
0
0 + β11∆mct + β21∆ut (3.23)

−(1− α) {we −mct−1 − γe1ut−1 −me0}+ εt,

we only need to keep in mind that β00 = β0 − (1− α)me0 as explained.
Subject to the condition 0 < α < 1 stated above, wage growth is seen to bring

the wage level in the direction of the bargained wage wb
e. For example, assume that

the sum of price and productivity growth is constant so that ∆mct = gmc, that the
rate of unemployment is constant, ∆ut = 0, and that there is no new shockt, εt = 0.
If there is disequilibrium in period t−1, for example

©
we − wb

e

ª
t−1 > 0, wage growth

from t− 1 to t will be reduced, and this leads to
©
we − wb

e

ª
t
<
©
we − wb

e

ª
t−1 in the

next period.
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Finally in the steady state equilibrium, with a prevailing constant rate of un-
employment, and no random shocks, then wt−1 = wb

et−1 as well as wt = wb
t , and

steady state wage growth is therefore ∆wet = ∆w
b
et = gmc. At this point teh reader

may have noted an apparent inconsistency, since, given these assumptions, the ECM
(3.23) gives:

∆wet = β00 + β11gmc,

and not ∆wet = gmc as implied by the steady-state path for the wage level. However,
this paradox is resolved by noting that the original constant term β0 in the ADL
can be defined to be

β0 = (1− α)me0 − (β11 − 1)gmc. (3.24)

If we invoke this definition of β0, the dynamic equation (3.23) is seen to give ∆wet =
(1 − α)me0 − (β11 − 1)gmc − (1 − α)me0 + β11gmc = gmc, which is consistent with
∆wet = ∆w

b
et = gmc in the steady state. At first it may seem a to be a suspect

trick to define the constant term of the ECM in the way we do in equation (3.24).
Without going into details this is however not the case, and the definition in (3.24)
is innocuous. One way to think about this is that if β0 measured something different
than (3.24) our theory would not account for the systematic part of wage growth,
and in that case, a different ECM should have been formulated from the outset. For
those with a background in econometrics, (3.24) is seen to correspond to formulating
a regression equation by subtracting the means of the variables on both sides of the
equation, an operation which does not affect the equation or the estimation results
obtained.

3.2.3 Wage bargaining and inflation

So far, we have looked at only e-sector wage formation, and not inflation as such.
To sketch the theory’s implication for inflation, we need to reconsider the three
equations (3.13)-(3.15). Equation (3.13) is a definition equation that holds not only
in the long run, but also in each time period. Hence, we have

pt = φqst + (1− φ)qet

or in terms of growth rates:

∆pt = φ∆qst + (1− φ)∆qet. (3.25)

The two equations (3.14), for the s-sector wage, and (3.15), for the s-sector price
level, have a different interpretation. They are hypotheses about the steady state,
and as we learned already in the opening chapter of the book, adding time subscripts
to these equations entail that we assume that s-sector price and wage formation are
characterized by instantaneous adjustment (infinite speed of adjustment). This is
clearly unrealistic, since there is no reason why adjustment lags and friction should
not be important for wage and price adjustments in the sheltered sector. Hence, it is
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only in order to simplify the model as much as possible that we write the equations
for ∆wst and ∆qst as

∆wst = ∆wet, and (3.26)

∆qst = ∆wet −∆aet. (3.27)

Equation (3.23) for e-sector wage growth and (3.25)-(3.27) are 4 equations which
determine the endogenous variables wet, wst, qst and pt as functions of initial con-
ditions and given values for exogenous variables mct, ut and εt. The exogenous and
pre-determined variables are wet−1, mct−1 and ut−1. The model is a recursive sys-
tem of equations: The wage growth rate in the exposed sector is determined first,
from (3.23) and then the other growth rates follow recursively

Specifically, the reduced form equation for the rate of inflation, ∆pt, is found to
be:

∆pt = φβ00 (3.28)

+(φβ11 + (1− φ))∆qe,t + φβ21∆ut

+φβ11∆aet − φ∆ast

−φ(1− α) {wet−1 −mct−1 − γe1ut−1 −me0}
+φεt

showing that the bargaining model implies the following explanation of inflation in
a small-open economy:

1. Autonomous inflation: φβ00,

2. “Imported inflation”: (φβ11 + (1− φ))∆qet

3. Shock to unemployment: φβ21∆ut

4. Productivity growth: φβ11∆aet − φ∆ast,

5. e-sector equilibrium correction: −φ(1− α) {we.t−1 −mct−1 − γe1ut−1 −me0}

6. random shocks: φεt

In order to get some idea about the size of these factors, we may set the share of
non-traded goods in consumption to 0.4. Then φ = 0.67, and setting β11 = 0.5 gives
a coefficient of ∆qet of 0.66. Foreign inflation in the range of 1%− 5% is of course
not uncommon, and our model implies that a 3% inflation abroad implies about
2% “imported inflation”. The coefficient of ∆aet is 0.33, and for ∆ast we obtain
−0.67. The net-effect of productivity growth rates at around 2% may therefore be
rather small. Note the implication that increased productivity in the exposed sector
of the economy increases inflation. It occurs because e-sector productivity growth
increases the bargained wage in that sector, which inflicts price increases in the
sheltered sector via the assumption of relative wage stabilization.
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Equilibrium correction in the exposed sector represents a numerically significant
factor in this model. With the chosen parameter values, and setting α = 0.7 in
the wage equation, the coefficient of {we.t−1 −mct−1 − γe1ut−1 −me0} in equation
(3.28) becomes 0.2. The interpretation is that a 1 percentage point deviation from
the the steady state wage in period t−1 leads to a reduction of the period t inflation
rate of 0.2 percentage points, ceteris paribus.

As noted, our derivation of the bargaining model inflation equation is very styl-
ized. Practical use of the framework needs to represent ∆wst and ∆qst by separate
equilibrium correction equations, and not impose instantaneous adjustment as we
have done in order to simplify. However, also in derivations which include more real-
istic models of sheltered sector wage and price adjustment, many of the properties of
(3.28) will continue to hold true. For example the strong role of imported inflation,
the sign reversal of the two productivity terms, and the role of equilibrium-correction
in exposed sector wage setting.

Above, we have repeatedly noted that the inflation model is recursive. In actual
wage setting, compensation for cost-of-living increases is always one of the issues.
Hence, to increase the degree of realism of the model one would, in most cases,
want to include ∆pt in the dynamic equation of exposed sector wages setting, with
a positive coefficient (less than one, though). Clearly, with this generalization of the
model, the inflation model is no longer a recursive system, since instead of (3.23),
we have:

∆wet = β00 + β11∆mct + β21∆ut + β31∆pt (3.29)

−(1− α) {wet−1 −mct−1 − γe1ut−1 −me0}+ εt.

However, since inflation can be expresses as:

∆pt = φ∆wet − φ∆ast + (1− φ)∆qet

we can derive the following semi-reduced form for ∆wet:

∆wet = β̃
0
0 + β̃11∆mct + β̃21∆ut + β41∆ast + β51∆qet (3.30)

−^(1− α) {wet−1 −mct−1 − γe1ut−1 −me0}+ ε̃t.

where the coefficient with aneare the original coefficients of (3.29) divided by (1−
β31φ), and β41 = −β31φ/(1− β31φ), β51 = β31(1− φ)/(1− β31φ). By using (3.30)
instead of (3.29) in the system-of-equations, the recursive nature of the model is put
back in place.

3.2.4 The Norwegian model of inflation

The Norwegian model of inflation was formulated in the 1960s, several decades
before the formal bargaining approach was applied to wage setting9. It soon became

9In fact there were two models, a short-term multisector model, and the long-term two sector
model that we re-construct using modern terminology in this chapter. The models were formulated
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the framework for both medium term forecasting and normative judgements about
“sustainable” centrally negotiated wage growth in Norway.10 However, it is not
the historical importance of the Norwegian model which is our concern here, but
instead that the Norwegian model of inflation is consistent with the implications of
the bargaining model. Moreover, while the interpretation of the modern bargaining
model is often left hanging “in the air”, with some researchers even viewing it as a
model that is relevant in the short-run, the Norwegian model was originally explicitly
formulated as a long-run model. Consistent with this is the Norwegian model’s
careful analysis of the potentially numerous equilibrating mechanisms, but also the
multitude of disequilibrating shocks that realistically characterizes wage dynamics
in the short-run. From this point of view, the Norwegian model is a more general
model of bargaining dominated wage evolution.

Another name for the Norwegian model is the main-course model for wages,
since a joint trend made up of productivity and foreign prices define the scope for
wage growth, i.e., the main-course followed by the wage level through time. In the
following, we use the names main-course model and Norwegian model of inflation
interchangeably.

3.2.4.1 A direct motivation for long-run wage and price relationships

In the same way as above, a central distinction is drawn between a tradables sector
where firms act as price takers, and a non-tradables sector where firms set prices as
mark-ups on wage costs. In the same manner as above, the two sectors are dubbed
the exposed (e) and sheltered (s) sectors of the economy.

The model’s main propositions are, first, that exposed sector wage growth will
follow a long-run tendency defined by the exogenous price and productivity trends
which characterize that sector. The joint productivity and price trend is called the
main-course of e-sector wage development. The relationship corresponds to equation
(3.12), for the bargained wage. Second, it is assumed that the relative wage between
the two sectors are constant in the long-run, as already introduced in equation (3.3).
Third, the development of the price level in the s-sector is a mark-up on the unit-
labour costs in that sector, as captured by (3.2). In this section we concentrate on
how the first proposition is rationalized in the seminal contribution by Odd Aukrust,
from 1977.11

in 1966 in two reports by a group of economists who were called upon by the Norwegian government
to provide background material for that year’s round of negotiations on wages and agricultural
prices. The group (Aukrust, Holte and Stolzt) produced two reports. The second (dated October
20 1966, see Aukrust (1977)) contained the long-term model that we refer to as the main-course
model. Later, there was similar development in e.g., Sweden, see Edgren et al. (1969) and the
Netherlands, see Driehuis and de Wolf (1976).
In later usage the distinction between the short and long-term models seems to have become

blurred, in what is often referred to as the Scandinavian model of inflation. We acknowledge
Aukrust’s clear exposition and distinction in his 1977 paper, and use the terminology Norwegian
main-course model for the long-term version of his theoretical framework.
10On the role of the main-course model in Norwegian economic planning, see Bjerkholt (1998).
11Aukrust (1977).
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Recall that the wage share of value added output in the e-sector is

WeLe

QeYe
=

We

QeAe
, where average labour productivity is given as Ae =

Ye
Le
.

Correspondingly, the rate of profit is

QeYe −WeLe

QeYe
= 1− We

QeAe
.

It is reasonable to assume that in order to attract the investments needed to maintain
competitiveness and employment in the e-sector, a certain normal rate of profit has
to be met, at least in the long term. Since there is a one-to-one link between the
profit rate and the wage share, there is also a certain maintainable level of wage
share. Denote this long-run wage shareMe, and assume that both the product price
and productivity are exogenous variables. We can now formulate what we might
call the main-course proposition:

W ∗
e =MeQeAe, (3.31)

where W ∗
e denotes the long-run equilibrium wage level consistent with the two as-

sumptions of exogenous price and productivity, and the existence of a normal wage
share. It is practical to take logs,

H1mc: w∗e = qe + ae +me, (3.32)

and use the marker H1mc to indicates that this is the first hypothesis of the theory.
As ususal we identify the long-run equilibrium wage level, W ∗

e or (in log) w∗e , with
the steady state wage level. Equation (3.32) therefore captures that the long-run
elasticities of the wage level with respect to productivity and price are both unity.

Equation (3.32) has a very important implication for actual data of wages, prices
and productivity in the e−sector: Since data for qe and ae show trend-like growth
over time, actual time series data for the nominal wage, wet, should also show a
dominant positive growth around a trend defined by price and productivity. If
this is not the case, then w∗e , cannot be the equilibrium to which the actual wage
converges in a steady state.

The joint trend made up of productivity and foreign prices, traces out a cen-
tral tendency for wage growth, it represents a long-run sustainable scope for wage
growth. Aukrust (1977) aptly refers to this joint trend as the main-course for wage
determination in the exposed industries.12 For reference we therefore define the
main-course variable (in logs) as

mc = ae + qe. (3.33)

It is instructive to see, by way of citation, that Aukrust meant exactly what we have
asserted, namely that equation (3.32) is a long-run relationship corresponding to a
steady state situation. Consider for example the following quotation:
12The essence of the statistical interpretation of the theory is captured by the hypothesis of so

called cointegration between we and mc see Nymoen (1989) and Rødseth and Holden (1990)).
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The relationship between the “profitability of E industries” and the
“wage level of E industries” that the model postulates, therefore, is a
certainly not a relation that holds on a year-to-year basis. At best it is
valid as a long-term tendency and even so only with considerable slack.
It is equally obvious, however, that the wage level in the E industries is
not completely free to assume any value irrespective of what happens to
profits in these industries. Indeed, if the actual profits in the E industries
deviate much from normal profits, it must be expected that sooner or
later forces will be set in motion that will close the gap. (Aukrust, 1977,
p 114-115).

Aukrust coined the term ‘wage corridor’ to represent the development of wages
through time, and he used a graph similar to figure 3.1 to illustrate his ideas. The
main-course defined by equation (3.33) is drawn as a straight line since the wage is
measured in logarithmic scale. The two dotted lines represent what Aukrust called
the “elastic borders of the wage corridor”.

log wage level

time

Main course

"Upper boundary"

"Lower boundary"

0

Figure 3.1: The ‘wage corridor’ in the Norwegian model of inflation.

We understand that Aukrust’s model and the bargaining model of wage setting
are mutually consistent theories. In particular, the bargaining model’s proposition
(3.12)

wb
e = me0 + ae + qe + γe1u, γe1 ≤ 0

is of the same form as H1mc, if we set me = me0 + γe1u. In the wage bargaining
model, changes in the rate of unemployment causes the wage mark-up onmc to move
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up or down. In a similar way, the normal rate of profit in the main-course model
is conditioned by economic, social and institutional factors. A long term change in
the rate of unemployment is one of the factors that can shift the sustainable profit
rate.13 Therefore, it is fully consistent with the gist of Aukrust’s model that we
replace H1mc by the more general hypothesis:

H1gmc w∗e = me0 +mc+ γe1u.

As mentioned above, there are two other long-run propositions which are part of
Aukrust’s theory. The first is an assumption about a constant relative wage between
the two sectors, and the second is a normal sustainable wage share also in the
sheltered sector of the economy. We dub these two additional propositions H2mc

and H3mc respectively:

H2mc w∗s − w∗e = mse,
H3mc w∗s − q∗s − as = ms,

mse is the log of the long-run ratio between e-sector and s-sector wages. as is the
exogenous productivity trend in the sheltered sector, and ms is the (log) of the
equilibrium wage rate in the sheltered sector. With reference to section 3.2.1, in
that model, mse = ln(1) and ms = − ln(�).

Note that, if the long-run wage in the exposed sector is determined by the exoge-
nous main course, then H2mc determines the long-run wage in the sheltered sector,
and H3mc in turn determines the long-run price level of the sheltered sector. Hence,
re-arranging H3mc, gives

q∗s = w∗s − as −ms

which is similar to theories of so called normal cost pricing: the price is set as a
mark-up on average labour costs, in accordance with (3.15) above.

3.2.4.2 Dynamic adjustment in the Norwegian model

As we have seen, Aukrust was clear about two things. First, the main-course re-
lationship for e-sector wages should be interpreted as a long-run tendency, not as
a relationship that governs wage development on a year to year basis. Hence, the
theory makes us anticipate that actual observations of e-sector wages will fluctuate
around the theoretical main-course. Second, if e-sector wages deviate too much from
the long-run tendency, we expect that forces will begin to act on wage setting so that
adjustments are made in the direction of the main-course. For example, profitability
below the main-course level will tend to lower wage growth, either directly or after
a period of higher unemployment. In Aukrust’s words:

13No doubt, Aukrust’s formulation, without unemployment as an explicit variable, was condi-
tioned by the realities of the Norwegian economy of the 1960s, where unemployment had been
constant at a low level since the ende of WW2 in line with poltical priorites..
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The profitability of the E industries is a key factor in determining the
wage level of the E industries: mechanism are assumed to exist which en-
sure that the higher the profitability of the E industries, the higher their
wage level; there will be a tendency of wages in the E industries to adjust
so as to leave actual profits within the E industries close to a “normal”
level (for which however, there is no formal definition). (Aukrust, 1977,
p 113).

In sum, the basic idea is that after the wage level have been knocked off the main-
course, forces are will begin to act on wage setting so that adjustments are made in
the direction of the main-course. One equilibrating mechanism, is equilibrium cor-
rection of the nominal wage level, and it therefore immediately clear that the analysis
and results of section 3.2.2 apply equally to the Norwegian model of inflation.

Figure 3.2 illustrates the dynamics following an exogenous and permanent change
in the rate of unemployment: We consider a hypothetical steady state with an
initially constant rate of unemployment (see upper panel) and wages growing along
the main-course. In period t0 the steady state level of unemployment increases
permanently. Wages are now out of equilibrium, since the steady state path is
shifted down in period t0, but because of the corrective dynamics, the wage level
adjusts gradually towards the new steady state growth path. Two possible paths
are indicated by the two thinner line. In each case the wage is affected by β21 < 0 in
period t0. Line a corresponds to the case where the short-run multiplier is smaller
in absolute value than the long-run multiplier, (i.e.,−β21 < −γe1). A different
situation, is shown in adjustment path b, where the short-run effect of an increase
in unemployment is larger than the long-run multiplier.

3.2.5 A simulation model of wage dynamics

We can use computer simulation to confirm our understanding about the dynamic
behaviour wages in the bargaining model. The following three equations make up a
representative bargaining model of wage-setting in the exposed sector:

wet = 0.1mct + 0.3mct−1 − 0.06 lnUt−1 + 0.6wet−1 + εwt, (3.34)

mct = 0.03 +mct−1 + εmct (3.35)

Ut = 0.005 + 0.005 · S1989t + 0.8Ut−1 + εUt (3.36)

Equation (3.34) is a simplified version of (3.16), where we omit the constant term
and the current value of the rate of unemployment. Note that the equation is
written with an explicit log transformation of the rate of unemployment, Ut. The
disturbance εet is has a zero mean and standard error 0.01 (which is representative of
the residual standard error found when estimating wage equations on annual data).
Equation (3.35) defines the main-course variable as a random walk. The average
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Figure 3.2: The main-course model: A permanent increase in the rate of unemploy-
ment, and possible wage responses.

annual growth rate of the main-course is 0.03.14 The standard error of εmct is also
set to 0.01. The third equation, (3.36), is the equation for the rate of unemployment.
It specifies Ut as an exogenous variable (there is no presence of wet or its lags in
the Ut equation), in line with the assumptions underlying our derivation of the wage
equation from bargaining theory. The exogeneity of Ut is not meant as a realistic
assumption to use in a complete macro model. We make the assumption here to
illustrate that the wage rate can be dynamically stable even if the unemployment rate
is not influenced by the wage rate. Intuitively, endogenity of Ut of the normal type,
where Ut increases with higher wet, cannot damage the stability of wage. Instead
such a formulation would represent a second equilibrating mechanism, alongside the
stabilization inherent in the bargaining model.

Note that the present formulation of the Ut equation has a steady state solution

14Due to the disturbance term, the period by period growth rates vary, hence the rate of change,
and thus the trend of mct, is stochastic as the name suggests.
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Figure 3.3: The wage evolution resulting from simulation of the calibrated model of
equation (3.34) -(3.36).

for Ut, since the autoregressive coefficient is set to 0.8. We have added a structural
change in the unemployment period, and this explains why the term 0.005 · S1989t
is included the model. S1989t is a so called ‘step-dummy’, which is zero until 1988
(t < 1989) and one for later periods. You can check that this corresponds to a steady
state rate of unemployment equal to 2.5% before 1989, and to 5% after. Hence there
is a regime shift in the equilibrium rate of unemployment, taking place in 1989.15

In Figure 3.3, the dotted line shows the solution for wet over the period 2003-2010,
using the initial values mc2002 and U2002, and the values for the three disturbances,
drawn randomly by the computer programme for the solution period 2003 − 2010.
The line closest to the line for the solution is the hypothetical steady state develop-
ment for the wage level, and it corresponds to the log of the bargained wage (wb

e).
Finally, the boundaries of the wage-corridor is given as ±2 standard errors of the
main-course.

Figure 3.3 illustrates the theoretical points of the bargaining and Norwegian
model.

1. There is a stable growth in the steady state wage, wb
e.

15For reference, the standard error of εU,t is set to 0.003.
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Figure 3.4: Unemployment and wage response to a regime shift in the equilibrium
rate of unemployment in 1989. Simulation of the calibrated model (3.34)-(3.36).

2. The solution for the wage, wet, shows the same trend as the steady state.

3. Except by coincidence, the graph for the actual wage wet is not identical to the
line for the steady state path of the wage rate. This is of course due to random
changes in unemployment, wage setting, and in other factors that influence the
solution.

Figure 3.4 shows the effects of the regime shift in the rate of unemployment.16

The important difference from Figure 3.2 is that the adjustment of unemployment
to the new steady state is gradual, while it is assumed to be instantaneous in Figure
3.2. The lower panel of the graph shows that the wage level is gradually reduced
compared to what we would have observed if the regime shift had not kicked in
during 1989 (indicated by the dotted line).

Although this section has used simulation of a calibrated model to illustrate wage
and unemployment dynamics, the model remains wholly theoretical. However, in
section 3.5.2 we will show an estimated model, using real world data, which has very
similar properties.
16For simplicity, all disturbances are set to their mean value of zero in the simulations underlying

this figure.
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3.2.6 The main-course model and the Scandinavian model of infla-
tion

So far in this chapter we have discussed two theoretical models of wage dynamics and
inflation which, although they originated in different historical period, are mutually
consistent. Both models are genuine dynamic models since they are built on an
explicit distinction between the short-run and the long-run. The distinction between
long-term steady state propositions and dynamics has not always been made clear,
though. This is true for the Scandinavian model, which the main-course model is
often confounded with.

The Scandinavian model, see Rødseth (2000, Ch 7.6), specifies the same three
underlying assumptions as the main-course model: H1mc (we do not need the ex-
tended version of the hypothesis for the point we wish to make here), H2mc and
H3mc. But the distinction between long-run and dynamics is blurred in the Scandi-
navian model. Hence, for example, the dynamic equation for e-sector wages in the
Scandinavian model is usually written as:

∆we,t = β0 +∆mct,

(without a disturbance term for simplicity) which is seen to place the rather unreal-
istic restriction of α = 1 on e-sector wage dynamics. Hence, the Scandinavian model
specification can only be expected to be reasonable if the time period subscript t
refers to a span of several years, so that ∆we,t and ∆mct refer to for example 10
years averages of the two growth rates.17

3.2.7 Wage-price curves and the NAIRU/natural rate of unemploy-
ment

Most modern textbooks in macroeconomics contain models of trade unions and firm
behaviour. The gist of these models is that firms attempt to mark-up up their prices
on unit labour costs, while workers and unions on their part strive to make their real
wage reflect the profitability of the firms, thus their real wage claim is a mark-up on
productivity. Hence, there is an important and interesting conflict between workers
and firms: Both parties are interested in the size of the real wage, but their goals
are usually different. Neither of the parties have perfect control over the real wage:
Unions have only limited influence on the real wage since their channel of influence
is the bargaining process, which is about the size of nominal wage increases. Firms
also influences the nominal wage as long as they are part of the bargaining, moreover
they have a strong channel of influence on the real wage since they decide the size of
price adjustment unilaterally through mark-up pricing. Nevertheless, the real wage
is neither perfectly controlled nor perfectly foreseeable by the firms.

Although it might already be obvious to the reader, the bargaining model which
we have set out above (and therefore also the main-course model) fits into this

17For an exposition and appraisal of the Scandinavian model, in terms of contemporary macro-
economics, see Rødseth (2000, Chapter 7.6)
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framework. If we use wb
e in (3.12), or alternatively w∗e in H1gmc, to denote the

desired (or bargained) wage, and use p∗ = φq∗s + (1 − φ)qe to define p∗, the price
level implied by the pricing of firms, we obtain:

w∗e = me0 + qe + ae + γe1u, and (3.37)

p∗ = φ(mse −ms) + φ(w∗e − as) + (1− φ)qe (3.38)

where we have utilized H2mc and H3mc to derive (3.38) for the desired price p∗ as
a mark-up on bargained unit-labour costs (w∗e − as). Due to the openness of the
economy, p∗ also depends on foreign prices, qe.

However, there is an important difference, since in our model, w∗ and p∗ cor-
responds to steady state equilibrium values, while the standard exposition of wage
and price setting often sets we = w∗e and p = p∗ in each time period. The inevitable
implication is that actual wages and prices are determined in each period are by a
static model. As we have seen above, this implies that the speed of adjustment of
wages and prices are so fast that that there is neglible nominal persistence, which is
unrealistic by most standards. It is more reasonable to hold on to the interpretation
that (3.37) and (3.38) are relationships that describe a steady state.

The steady state interpretation in its turn raises another important issue about
which variables are determined by the two-equation static model. To look into
this issue we simplify the notation by setting as = ae = a, and mse = 0, so that
w∗e = w∗s = w∗ in line with the two sector model used above. In the steady state
interpretation of the model can set w = w∗ and p = p∗, without loss of generality,
and (3.37) and (3.38) can then be re-expressed as:

w − qe − a = me0 + γe1u, (3.39)

w − qe − a = ms +
1

φ
(p− qe) (3.40)

where (3.40) is simply (3.38) with the (e-sector) wage share on the left hand side of
the equation. Equation (3.39) can be represented graphically as downward sloping
line in a graph with w − qe − a along the vertical axis and u along the horizontal
axis. This is the wage-setting curve which is illustrated in figure 3.5. Equation
(3.40) defines a horizontal line in the same graph. This is the price-setting curve.

The intersection point between the two curves is seen as the determination of the
wage curve “natural rate of unemployment”, or “non-accelerating inflation rate of
unemployment”, NAIRU, which has become a popular acronym. In the literature,
the distinction between the natural rate and the NAIRU is often made in terms of
whether the steady state unemployment rate depends on the rate of inflation (the
NAIRU case), or is independent of the inflation rate. In the following we will use
the term natural rate for brevity, and make it clear whenever there is a relationship
between the steady state inflation and unemployment rates.

In the figure, uw denotes the wage curve natural rate of unemployment. There
has become custom to identify uw with the steady state rate of unemployment
consistent with wage bargaining and mark-up price setting. That interpretation is
succinctly expressed by Layard et al. (1994)
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Figure 3.5: Real wage and unemployment determination, NAIRU indicated by uw

.and a steady state rate of unemployment which is determined in part from outside
the model of wage and price setting is denoted uss.

‘Only if the real wage (W/P ) desired by wage-setters is the same as
that desired by price setters will inflation be stable. And, the variable
that brings about this consistency is the level of unemployment’.18

The heuristics of this theory is that actual unemployment below the natural
rate, ut < uw, will create wage increases and expectations of future wage-price
adjustments in such a way that the result is ∆πt > 0, using the notation of section
2.4.2 that πt represents the increase in the price level. Conversely, ut > uw, entails
falling rates of inflation ∆πt < 0. uw is the only (steady state) value of ut which is
consistent with ∆πt = 0.

However, we have seen above that in the Norwegian model of inflation, there is
an asymptotically stable equilibrium where both the rate of wage growth and the

18Layard et al. (1994, p 18), authors’ italics.
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inflation rate are constant for any given constant rate of unemployment. Since the
Norwegian model can be interpreted as a wage-bargaining model, the (emphasized)
second sentence in the above quotation has been disproved already: It is not neces-
sary that the steady state rate of unemployment in a bargaining model corresponds
to uw in figure 3.5.19 The steady state rate of unemployment uss may be lower than
uw, as is the case shown in the graph, or higher. The figure further indicates (by a •)
that the steady state wage share in general will reside at a point on the line segment
A-B: Heuristically, this is a point where price setters are trying to attain a lower real
wage by nominal price increases, at the same time at the wage bargain is delivering
nominal wage increases that push real wage upwards. Hence, in the general case
the steady state is not characterized by the real wage desired by wage-setters being
the same as that desired by price setters. Instead there is a tug-of-war equilibrium
where the steady state real wage is a weighted average of the two parties respective
targets for the wage share.

Bårdsen et al. (2005a, Ch 6) show which restrictions on the parameters of the
dynamic equation for wage and price adjustments that are necessary for ut → uss =
uw to be an implication, so that the uw corresponds to the stable steady state. In
brief, the model must be restricted in such a way that the nominal wage and price
setting adjustment equations become two conflicting dynamic equations for the real
wage. In the context of an open economy, in particular, this step is anything but
trivial. It is not sufficient to impose a restriction referred to as dynamic homogeneity
for example (dynamic homogeneity will be defined below, in the context of the
Phillips curve). What is required is n fact to purge the model of all nominal rigidity,
which seems to be unrealistic on the basis of both macro and micro evidence.

We have explained that the Layard-Nickell version of the natural-rate/NAIRU
concept corresponds to a set of restrictions on the dynamic model of wage and price
setting. As will become clear in section 3.3, a similar conclusion is true for the
natural rate of unemployment associated with a Phillips curve model for wages and
prices.

The conclusion is that, special cases aside, the wage-bargaining model does not
imply a unique supply-side determined steady state rate of unemployment. In order
to avoid misunderstandings, it is perhaps worth stressing that there is no contra-
diction between this result, and the realistic belief that the average long-run rate of
inflation is strongly influenced by supply-side factors. The implication is only that
the steady state rate of unemployment is left undetermined in this particular model
of the supply side. A wider iterpretation is that a realistic model of the steady state
for unemployment generally requires a richer macro model than only equations for
price and wage setting.

We end this section by noting another puzzled that has been more acknowledged
than the problem with lack of correspondence between uw and a steady state rate of

19The exposition of wage bargaining dynamics and the Norwgian model was based on exogenous
prices in the exposed sector, but this simplification represents no loss of generality regarding this
issue about the necessitry (or not) of uss = uw withing the framwork of the bargaining model.
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unemployment. This problem is understood by noting that the price-curve depends
on the relative price p − qe, so an unique intersection point in figure 3.5 does not
exist unless we can fix p − qe at a certain value. Put differently: (3.39) and (3.40)
are two equation in three unknown variables, and it is not clear why it is that u
should be regarded as endogenous, and not p − qe. The most used argument is
that p − qe can be regarded as determined from outside the system of wage and
price setting equations. Since p− qe is an indicator of the degree of competitiveness
in the economy, it makes sense to assume that its long-run value is given by the
requirement that the trade balance (or the current account) is balanced in the long
term. However, as we have seen in section 3.2.3, the properties of the dynamic
wage and price setting system imply that if a steady state exists for wages (and
the wage share wt − qet − at), a steady state also exists for pt − qet. Hence, from
this perspective there is an internal inconsistency in the approach which determines
the steady state of the rate of unemployment from static wage and price curves, by
imposing a steady-state value of p − qe from outside the model of wage and price
setting.

3.2.8 Role of exchange rate regime

Later in the book, a main focus will be the choice of exchange rate regime, and how
that choice conditions macrodynamics. So far we have implicitly assumed that the
rate of foreign exchange is exogenous, corresponding to a fixed exchange rate regime.
In order to make this explicit, we need to expand the notation a little. For example,
the sum of the logs of productivity and foreign price

mct = aet + qet

which can be written as

mct = ∆aet +∆qet +mct−1, (3.41)

or
mct = ∆aet +∆q

∗
et +∆ lnEt +mct−1. (3.42)

where q∗et denotes the (log of) foreign prices in foreign currency, and Et is the nominal
exchange rate (kroner/euro).20 The reason why we have suppressed the nominal
exchange rate Et from the model so far, is that in a fixed exchange rate regime, the
Et has no separate influence on wage growth. It does not matter whether a change
in qet “comes from” a change in q∗et or in Et (a devaluation for example).

However, in the case of a floating exchange rate, we need to specify the model
of the market for foreign exchange in more detail. For example, if capital mobility
is perfect, the so called risk premium is zero and the market is characterized by

20We use the explicit notation ∆ lnEt rather than ∆et, to avoid conflict of notation with e as a
identifier of the exposed sector (for examples in subscripts).
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uncovered interest rate parity (see chapter 2.4.3 and Rødseth (2000, Chapter 1)),
UIP:

it − i∗t = eet

where it and i∗t are the domestic and foreign interest rates respectively, and e
e
t denotes

the expected rate of depreciation one period ahead. With perfect expectations we
thus have

∆ lnEt = it−1 − i∗t−1 (3.43)

where both it−1 and i∗t−1are predetermined variables. From equations (3.42) and
(3.43) it is clear that in the case when UIP holds, and with perfect depreciation
expectations, the main-course variable mct depends only on exogenous (∆aet and
∆q∗et) variables and predetermined variables (it−1 and i∗t−1) and the stability condi-
tion 0 < α < 1 is necessary and sufficient conditions for stability also in the case of a
floating exchange rate regime. Hence, it is not valid to a priori restrict the validity
of the bargaining framework presented above to a fixed exchange rate regime.

However, it is also understood that after a change from a fixed to a floating
exchange rate, the continued validity of a wage setting model should be evaluated
carefully. The reason is that a change of regime in the market for foreign exchange
may lead to structural changes elsewhere in the macroeconomic system, for example
in wage setting.

3.3 The open economy Phillips curve

The price Phillips curve was introduced in section 2.4.2 as an example of an ADL
equation. One often stated difference between the Phillips curve and the wage
bargaining model is that the latter views the labour market as the most important
source of inflation, while the Phillips curve’s focus on product market. However, this
difference is more a matter of emphasis than of principle, since both mechanism may
be operating together. In this section we show formally how the two approaches can
be combined by letting a wage Phillips curve take the role of a short-run relationship
of nominal wage growth, while the steady state has the same properties as in the
wage bargaining model.

An important insight to take away from this section is that also the Phillips
curve can be given an equilibrium correction interpretation. The main difference
from the Norwegian/bargaining model is the nature of the equilibrating mechanism:
The bargaining model represents a way of organizing the economy such that there is
enough collective rationality to secure dynamic stability of wages at any given rate
of unemployment–including the low rates that one speak of “full employment” in
practical terms. Wage growth and inflation never gets of control so to speak. The
Phillips curve model represents a less sophisticated organization of the economy.
According to that theory, unemployment has to adjust to a particular level for the
rate of inflation to stabilize. This particular equilibrium level of unemployment
is logically equivalent to the NAIRU/natural rate uw of section 3.2.7. However,
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because we now derive the natural rate of unemployment in a explicit Phillips curve
framework, we will denote it uphil as a reminder of the model dependency of the
natural rate.

Without loss of generality we concentrate on the wage Phillips curve. We also
simplify the long-run model as much as possible, without losing consistency with
the wage bargaining model that we presented above. The essential assumptions of
the model we formulate is the following:

1. w∗et = me0 + mct, with mct ≡ aet + qet exogenous both in the steady state
and in each time period. w∗t denotes the asymptotically stable steady state
solution for the logarithm of the wage-rate.

2. The unemployment rate ut is determined in the dynamic system, it has a
asymptotically stable solution uphil.

The framework we use is an ECM system, with a wage Phillips curve as one of the
equations:

∆wt = βw0 + βw1∆mct + βw2ut + εwt, βw2 < 0, (3.44)

ut = βu0 + αuut−1 + βu1(w −mc)t−1 + εut βu1 > 0 (3.45)

0 < αu < 1,

where we have simplified the notation somewhat by dropping the “e” sector sub-
script.21 Compared to equation (3.17) above, we have also simplified by assuming
that only the current unemployment rate affects wage growth. On the other hand,
since we now use two equations, we have added a w in the subscript of the coeffi-
cients. Note that compared to (3.17), the autoregressive coefficient (which would
be αw in the notation with subscribt for “wage equation”) is set to unity in (3.44).
This is not a simplification, but instead represents the defining characteristic of the
Phillips curve. Equation (3.45) represents the idea that low profitability causes un-
employment. Hence if the wage share is high relative to what can be sustained by
the exposed sector, unemployment will increase, i.e., βu1 > 0.

(3.17) and (3.44) make up a dynamic system. Building on what we have learnt
about stability in chapter 2.7 and 2.8, we know that for a given set of initial values
(w0,u0, mc0), the system determines a solution (w1, u1), (w2, u2), ...(wT , uT ) for the
period t = 1, 2, ...., T . We also know that the solution depends on the values of
mct, εw t, εu,t over that period.

Without further restrictions on the coefficients, it becomes complicated to derive
the final equation for wt. However, as we also have learned, we can characterize the
steady state, assuming that it exists (i.e., assuming that the dynamic the solution
is stable). Usually, we can also understand the dynamics in qualitative terms even
though the dynamic solution is beyond our capability. We follow this approach in
the following.

21Alternatively, given H2mc, ∆wt represents the average wage growth of the two sectors.
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As a first step, we derive the steady state solution of the system, assuming stable
dynamics, so that a solution exists. We choose the solution based on εw t = εu,t = 0
and ∆mct = gmc (i.e., the constant growth rate of the main-course), which gives rise
to the following steady state:

∆wt = gmc,

ut = ut−1 = uphil, the equilibrium rate of unemployment.

since wages cannot reach a steady state unless also unemployment attains its steady
state value, which we dub the equilibrium rate of unemployment, uphil. Substitution
into (3.45) and (3.44) gives the following long-run system:

gmc = βw0 + βw1gmc + βw2u
phil

uphil = βu0 + αuu
phil + βu1(w −mc)

The first equation gives the solution for uphil

uphil = (
βw0
−βw2

+
βw1 − 1
−βw2

gmc), (3.46)

which is the NAIRU/natural rate of unemployment implied by the Phillips curve
model. We can also call uphil the “main-course rate of unemployment”, since it is
the rate of unemployment required to keep wage growth on the main-course.

Next, let us consider the dynamics of the system. Consider the dynamic solu-
tion based on ∆mct = gmc, and εw t = εu,t = 0 in all periods, starting from any
historically determined initial condition. In this case, (3.44) becomes:

∆wt − gmc = βw0 + (βw1 − 1)gmc + βw2ut,

or, using (3.46):
∆wt − gmc = βw2(ut − uphil). (3.47)

Because of the assumption that βw2 < 0, wage growth is higher than the main-
course growth as long as unemployment is below the natural rate. Moreover, from
the second equation of the system, (3.45):

ut = βu0 + αuut−1 + βu1(w −mc)t−1, βu1 > 0

it is seen that a higher value of w −mc contributes to higher unemployment in the
next period. This analysis suggests that from any starting point on the Phillips
curve, stable dynamics leads to the steady state solution. This indicates that the
twin assumption of βw2 < 0 and βu1 > 0 is important for stability. Conversely, for
example βw2 = 0 harms stability.

Exactly that the Phillips curve needs to be supplemented with an equilibrating
mechanism in the form of the equation for the rate of unemployment is a major point
of insight. Without such an equation in place, the system is incomplete, as there is
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Figure 3.6: Open economy Phillips curve dynamics and equilibrium.

a missing equation. The question about the dynamic stability of the natural rate
cannot be addressed in the single equation Phillips curve “system”. In the bargaining
model, wages equilibrium correct deviations from the main-course directly. In the
Phillips curve case, wage equilibrium correction is assumed away. Dynamic stability
of the system then becomes dependent on a equilibrating mechanism of a more
indirect type which works through the rate of unemployment: In the case of too
large wage increases, unemployment is a “disciplining device” which forces wage
claims back on to a sustainable path.

The dynamics of the Phillips curve case is illustrated in Figure 3.6. Assume
that the economy is initially running at a low level of unemployment, i.e., u0 in
the figure. The short-run Phillips curve (3.44) determines the rate of wage inflation
∆w0. Consistent with equation (3.47), the figure shows that ∆w0 is higher than the
growth in the main-course gmc. Given this initial situation, a process starts where
the wage share is increasing from period to period. From equation (3.45) is is seen
that the consequence must be a gradually increased rate of unemployment, away
form u0 and towards the natural rate uphil. Hence we can imagine that the dynamic
stabilization process takes place “along” the Phillips curve in Figure 3.6. When the
rate of unemployment reaches uphil the dynamic process stops, because the impetus
of the rising wage share has dried out.

The steep Phillips curve in the figure is defined for the case of ∆wt = ∆mct.
The slope of this curve is given by βw2/(1 − βw1), and it has been dubbed the
long-run Phillips curve in the literature. The issue about the slope of the long-run
Phillips curve is seen to hinge on the coefficient βw1, the elasticity of wage growth
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with respect to the growth in the main-course. In the figure, the long-run curve
is downward sloping, corresponding to βw1 < 1 which is referred to as dynamic
inhomogeneity in wage setting. The converse, referred to as dynamic homogeneity
in the literature, implies βw1 = 1, and the long-run Phillips curve is then vertical.
Subject to dynamic homogeneity, the equilibrium rate uphil is independent of world
inflation and productivity growth gmc.
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Box 3.1 (A “bargaining based Phillips curve”?) Some im-
portant textbooks, for example Burda and Wyplosz (2005, Chapter
12.3) give a different message from ours, namely that wage bar-
gaining gives raise to a standard price Phillips curve. However,
that argument takes too lightly on the distinction between static
relationships and dynamic adjustment. To show how, consider a
closed economy version of our static model. Wage bargaining is then
for the whole economy so we replace equation (3.12) by:

w∗ = m0 + p∗ + a+ γ1u, γ1 < 0 (3.48)

and, the steady state price equation is simply.

p∗ = ln(�) + w∗ − a, � > 1. (3.49)

Burda and Wyplosz then set w∗ = w in both equations. However, in
the wage equation p∗ is replaced by pe which denotes the expected price
level, while in the price equation p∗ = p. Finally, time subscripts are
added in both equations to give

wt − at = m0t + pet + γ1ut, and

wt − at = − ln(�t) + pt.

Solving for pt gives

pt = ln(�t) +m0t + pet + γ1ut,

and taking the difference on both sides of the equation gives:

∆πt = ∆(ln(�t) +m0t) +∆π
e
t + γ1∆ut. (3.50)

Equation (3.50) is identical to Burda and Wyplosz’s equation (12.11),
with small qualification that they (implicitly) set ∆ut = 0. Their
“bargaining” Phillips curve also assumes

∆(− ln(�t) +m0t) = a(Yt − Ȳ ).

where Yt is GDP and Ȳ the full employment output, in other words
the output-gap (which is seen as perfectly correlated with the differ-
ence between current unemployment and the natural rate).
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The slope of the long-run Phillips curve represented one of the most debated
issues in macroeconomics in the 1970 and 1980s. One arguments in favour of a
vertical long-run Phillips curve is that workers are able to obtain full compensation
for price increases. Therefore, in the context of our model, βw1 = 1 is perhaps
the the only reasonable parameter value. The downward sloping long-run Phillips
curve has also been denounced on the grounds that it gives a too optimistic picture
of the powers of economic policy: namely that the government can permanently
reduce the level of unemployment below the natural rate by “fixing” a suitably
high level of inflation, see e.g., Romer (1996, Ch 5.5). In the context of an open
economy this discussion appears as somewhat exaggerated, since a long-run trade-off
between inflation and unemployment in any case does not follow from the premise
of a downward-sloping long-run curve. Instead, as shown in figure 3.6, the steady
state level of unemployment is determined by the rate of imported inflation and
productivity growth as represented by gmc. Neither of these are instruments of
economic policy.22

Both the wage Phillips curve of this section, and the model for wages in section
3.2.4 have been kept deliberately simple. In the real economy, cost-of-living con-
siderations play a significant role in wage setting. Thus, in empirical models one
usually includes current and lagged consumer price inflation in the wage equation.
Section 3.5 shows an empirical example. The above formal framework above can
extended to accommodate this, without changing the conclusion about the steady
state solution.

Another important factor which we have omitted so far from the formal analysis,
is expectations. For example, instead of (3.44) we might have

∆wt = βw0 + βw1∆w
e
t + βw2ut + εwt,

or ∆we
t+1 for that matter. However, as long as expectations are influenced by the

main-course variable, we will retrieve the same conclusion as above. For example

∆we
t = ϕ∆mct + (1− ϕ)∆wt−1, 0 < ϕ ≤ 1

In a steady state there are no expectations errors, so

∆we
t = ∆wt−1 = gmc

as before.
In section 3.2.3 we showed the implications of the bargaining model for domestic

inflation. To establish the corresponding result for the case of the Phillips curve
model, we repeat the definitional equation for the consumer price index:

pt = φqst + (1− φ)qet, 0 < φ < 1,

or, in differences
∆pt = φ∆qst + (1− φ)∆qet. (3.51)

22To affect uphil, policy needs to incur a higher or lower permanent rate of currency depreciation.
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Using the same simplifying assumptions as in section 3.2.3, for example that shel-
tered sector price growth is always on the long-run equilibrium path implied by the
main-course theory, we obtain the price Phillips curve:

∆pt = φβw0 + {φβw1 + (1− φ)}∆qet + φβw2ut + φβw1∆aet − φ∆ast + φεwt. (3.52)

Hence, the reduced form inflation equation contains basically the same explana-
tory variables as the bargaining model. The exception is the absence of the wage
equilibrium correction term.

Equation (3.52) is the counterpart to the standard price Phillips curve found
in all current textbooks, for example Blanchard (2005, Ch 8). Without any logical
inconsistencies, the Phillips curve can be augmented with terms that represent ex-
pectations, which can originate in wage setting (as hinted immediately above), or
in s-sector price setting. As long as these expectation are based on experience, they
will (only) imply a more complicated dynamic structure, but they will not affect the
essential model properties that we have focused on in this section.

3.4 Summing up the Norwegain model of inflation and
the Phillips curve model

So far in this chapter we have presented two dynamic models of wage setting. Both
are much used in modern macroeconomic thinking and model building. The follow-
ing 7 points summarize the main results.

1. The first model used bargaining theory to rationalize a long run relationship
between the wage level of the exposed sector and its main determinants: Prod-
uct price (qet), productivity (aet) and the rate of unemployment (ut). The elas-
ticities of product price and productivity are both unity, and we therefore often
subsume these two variables in one variable mct = qet + aet. With reference
to an earlier theoretical development, the variable is called the main-course
variable since it defines a long-run trend followed by wages.

2. If the long run wage equation is to correspond to a stable steady state growth
path, we showed that there has to be a stable ADL equation for wages (i.e.,
0 < α < 1,in the equation for wet), which can be transformed into an ECM
for wage growth.

3. The dynamic properties of the wage bargaining model are:

(a) For a given (exogenously determined) level of ut,wage growth equilibrium-
corrects deviations form the main-course.

(b) Therefore, there is a steady state level for the logarith omf ware share
(wet −mct).
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(c) Stability of wage growth and inflation also follows, even without assump-
tions about further equilibrium correcting behaviour in s-sector wage set-
ting, or in price formation.

4. The second model postulates a wage Phillips curve, PCM, consistent with
setting α = 1 in the wage ADL equation. The following results were found to
hold for the PCM specification of wage dynamics.

(a) The PCM (by itself, viewed isolated from the rest of the model economy)
gives an unstable solution for the wage share wet −mct.

(b) If the PCM is linked up with a second equation, which explains ut as an
increasing function of the wage share, the two equation system implies a
steady state level for the ware share wet −mct.

(c) The PCM implies a natural rate of unemployment (uphil) which cor-
responds to the steady state level of unemployment implied by the 2-
equation system.

5. Hence both models (wage bargaining and the PCM) implies a asymtotically
stable wage share, and also stable rates of wage and price inflation.

6. The difference between the models lies in the mechanism that secures stability
of the wage share

(a) In the wage brgainig case tere is an amount of collective rationality. For
example: Unions adjust their wage claims to the last years profitability.
Inflation is stabilized at any given rate of unemployment, also low ones
that prevailed in Europe until 1980 and in Scandinavia until the end of
last century.

(b) In the PCM case: There is less collective rationality. Instead unemploy-
ment serves as a disciplining device: There is only one level of unem-
ployment at which the rate of inflation is stable, i.e., the natural rate of
unemployment.

7. There seems to be some important implications for policy. For example:

(a) If PCM is the true model, then self-defeating policy to try to target “full
unemployment” below the natural rate.

(b) If the wage bargaing moodel is the true model then it is not only pos-
sible to target full unemployment, it may also be advisable in order to
maintain collective rationality (avoid breakdown in the bargaining sys-
tem/institutions).
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3.5 Norwegian evidence

In this section we illustrate how well wage equations corresponding to the Phillips
curve (PCM), and the wage bargaining model, fit the data for Norwegian manu-
facturing. Readers with no familiarity with econometrics should read on since we
abstract from all technical detail, and explain the economic interpretation of the
findings, and how they relate to the two theoretical models presented in this chap-
ter.

3.5.1 A Phillips curve model

We use an annual data set for the period 1965-1998. In the choice of explanatory
variables and of data transformations, we build on existing studies of the Phillips
curve in Norway, cf. Stølen (1990,1993). The variables are in log scale (unless
otherwise stated) and are defined as follows:

wct = hourly wage cost in manufacturing;

qt = index of producer prices (value added deflator);

pt = the official consumer price index (CPI index);

at = average labour productivity;

tut = rate of total unemployment (i.e., unemployment includes participants in
active labour market programmes);

rprt = the replacement ratio;

h = the length of the “normal" working day in manufacturing;

t1 = the manufacturing industry payroll tax-rate (not log).

Note, with reference to the previous sections, that the main-course variable would
be

mct = at + qt.

The estimated Phillips curve, using ordinary least squares, OLS, is shown in equation
(3.53). The term of the left hand side,\∆wct, is the fitted value of the growth rate
of hourly wage costs (hence the OLS residual would be ∆wct −\∆wct). On the left
hand side, we have the variables that are found to be significant.2324 The numbers in
brackets below the coefficients are the estimated coefficient standard errors, which
are used to judge the statistical significance of the coefficients. A rule-of-thumb

23We have followed a strategy of first estimating a quite general ADL, where both lagged wage
growth (the AR term) and productivity growth (current and lagged), and the lagged rate of unem-
ployemnt is includedt. A procedure called general-to-specific modelling has been used to derive the
final specification in equation (3.53).
24Batch file: aar_NmcPhil_gets.fl
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says that if the ratio of the coefficient and its standard error is larger than 2 (in
absolute value for negatively signed coefficients), the underlying true parameter
(the β) is almost certainly different from zero. Applying this rule, we find that all
the coefficients of the Norwegian Phillips curve are significant.

\∆wct = − 0.0683
(0.01)

+ 0.26
(0.11)

∆pt−1 + 0.20
(0.09)

∆qt + 0.29
(0.06)

∆qt−1

− 0.0316
(0.004)

tut − 0.07
(0.01)

IPt
(3.53)

The estimated equation is recognizable as an augmented Phillips curve, although
there are some noteworthy departures form the ‘pure’ wage Phillips curve of section
3.3. First, there is the rate of change in the CPI-index, ∆pt−1, which shows that
Aukrust’s basic model is too stylized to fit the data. Wage setters in the (exposed)
manufacturing sectors obviously care about the evolution of cost-of living, not only
about the wage-scope For reference, it might be noted that before the start of each
bargaining round in Norway, representatives of unions and of organizations on the
firm side, aided by a team of experts, work out a consensus view on the outlook for
CPI price increases. It is possible that the significance of the lagged rate of inflation
in equation is due these institutionalized forecasts on the actual wage outcome.

A second departure from the theoretical main-course Phillips curve is the ab-
sence of productivity growth in equation (3.53) (estimation shows that they are
statistically insignificant in this specification). Hence, the variables that represent
the main-course are the current an lagged growth rate of the product price index.
The rate of unemployment (in log form, remember) is a significant explanatory vari-
able in the model, and is of course what turns this into an empirical Phillips curve.
The last left hand side variable, IPt, represents the effects of incomes policies and
wage-price freezes, which have been used several times in the estimation period, as
part of the wider setting of coordinated and centralized wage bargaining.25

As discussed above, a key parameter of interest in the Phillips curve model is the
main-course natural rate of unemployment, denoted uphil in equation (3.46). Using
the coefficient estimates in (3.53), and setting the growth rate of prices (δf ) and
productivity growth equal to their sample means of 0.06 and 0.027, we obtain an
estimated natural rate of 0.0305 (which is as nearly identical to the sample mean of
the rate of unemployment (0.0313)).

Figure 3.7 shows the sequence of natural rate estimates over the last part of the
sample– together with ±2 estimated standard errors and with the actual unem-
ployment rate for comparison. The figure shows that the estimated natural rate
of unemployment is relatively stable, and that it is appears to be quite well deter-
mined. 1990 and 1991 are notable exceptions, when the natural rate apparently
increased from to 0.033 and 0.040 from a level 0.028 in 1989. However, compared to
confidence interval for 1989, the estimated natural rate has increased significantly
25IPt is a so called dummy variable: it is 1 when incomes policy is ‘on’, and 0 whne it is ‘off ’.
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Figure 3.7: Sequence of estimated main-course natural rates, uphil in the figure (with
±2 estimated standard errors), and the actual rate of unemployment.

in 1991, which represents an internal inconsistency since one of the assumptions of
this model is that uphil is a time invariant parameter.

Another point of interest in figure 3.7 is how few times the actual rate of unem-
ployment crosses the line of the estimated natural rate. This suggest very sluggish
adjustment of actual unemployment to the purportedly constant equilibrium rate.
In order to investigate the dynamics more formally, we have grafted the Phillips
curve equation (3.53) into a system that also contains the rate of unemployment
as an endogenous variable, i.e., an empirical counterpart to equation (3.45) in the
theory of the main-course Phillips curve. As noted above, the endogeneity of the
rate of unemployment is just as much a part of the natural rate framework as the
wage Phillips curve itself, since without the “unemployment equation” in place one
cannot show that the natural rate of unemployment obtained from the Phillips curve
corresponds to a steady state of the system.

We have therefore estimated a version of the dynamic Phillips curve system given
by equation (3.44)-(3.45) above. We do not give the detailed estimation results here,
but Figure 3.8 offers visual inspection of some of the properties of the estimated
model. The first four graphs show the actual values of ∆pt, tut, ∆wct and the
wage share wct − qt − at together with the results from dynamic simulation. As
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Figure 3.8: Dynamic simulation of the Phillips curve model. Panel a)-d) Actual and
simulated values (dotted line). Panel e)-f): multipliers of a one point increase in the
rate of unemployment

could be expected, the fits for the two growth rates are quite acceptable. However,
the “near instability” property of the system manifests itself in the graphs for the
level of the unemployment rate and for the wage share. In both cases there are
several consecutive year of under- or overprediction. The last two displays contain
the cumulated dynamic multipliers of tu and and the wage share, resulting from
a 0.01 point increase in the unemployment rate. The striking feature is that any
evidence of dynamic stability is hard to gauge from the two responses. Instead, it
is as if the level of unemployment and the wage share “never” return to their initial
values. Thus, in this Phillips curve system, equilibrium correction is found to be
extremely weak.

As already mentioned, the belief in the empirical relevance a the Phillips curve
natural rate of unemployment was damaged by the remorseless rise in European
unemployment in the 1980s, and the ensuing discovery of great instability of the
estimated natural rates. In that perspective, the variations in the Norwegian natural
rate estimates in figure 3.7 are quite modest, and may pass as relatively acceptable
as a first order approximation of the attainable level of unemployment. However,
the estimated model showed that equilibrium correction is very weak. After a shock
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to the system, the rate of unemployment is predicted to drift away from the natural
rate for a very long period of time. Hence, the natural rate thesis of asymptotically
stability is not validated.

There are several responses to this result. First, one might try to patch-up
the estimated unemployment equation, and try to find ways to recover a stronger
relationship between the real wage and the unemployment rate, i.e., in the empirical
counterpart of equation (3.45). In the following we focus instead on the other end
of the problem, namely the Phillips curve itself. In fact, it emerges that when
the Phillips curve framework is replaced with a wage model that allows equilibrium
correction to any given rate of unemployment rather than to only the “natural rate”,
all the inconsistencies are resolved.

3.5.2 An error correction wage model

In section 3.2.4 we discussed the main-course model and its extensions to modern
wage-bargaining theory. Equation (3.54) shows an empirical version of an equilib-
rium correction model for wages, similar to equation (3.21) above:

d∆wt = − 0.197
(0.01)

− 0.478
(0.03)

ecmw,t−1 + 0.413
(0.05)

∆pt−1 + 0.333
(0.04)

∆qt

− 0.835
(0.13)

∆ht − 0.0582
(0.01)

IPt
(3.54)

The first explanatory variable is the error correction term ecmw,t−1 which corre-
sponds to we,t − w∗e in section 3.2.4.2. The estimated w∗e is a function of mc, with
the homogeneity restriction (3.20) imposed.26 The estimated value of γe,1 is −0.01,
hence we have:

ecmw,t−1 = wct−1 −mct−1 − 0.01 tut−1
The variable ∆ht represents institutional changes in the length of the working week.
The estimated coefficient captures that the pay-losses that would otherwise have
followed from the reductions in working hours have been partially compensated in
the negotiated wage settlements.

The main motivation here is however to compare this model with the estimated
Phillips curve of the previous section. First note that the coefficient of ecmw,t−1
is relatively large, a result which is in direct support of Aukrust’s view that there
are wage-stabilizing forces at work even at a constant rate of unemployment. To
make further comparisons with the Phillips curve, we have also grafted (3.54) into
dynamic system that also contains an equation for the rate of unemployment (the
estimated equation for tut is almost identical to its counterpart in the Phillips curve
system). Hence we have in fact an estimated version of the calibrated simulation
model of section 3.2.5.
26So-called cointegration techniques have been used to estimate the relationship dubbed H1gmc

in section 3.2.4.1. A full analusis is documented in Bårdsen et al. (2005b, chapter 6).
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Figure 3.9: Dynamic simulation of the ECMmodel Panel a)-d) Actual and simulated
values (dotted line). Panel e)-f): multipliers of a one point autonomous increase in
the rate of unemployment
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Some properties of that system is illustrated in figure 3.9. For each of the four
endogenous variables shown in the figure, the model solution (i.e. the lines denoted
“simulated values”) is closer to the actual value than is the case in Figure 3.8 for
the Phillips curve system. The two last panels in the figure show the cumulated
dynamic multiplier of an exogenous shock to the rate of unemployment. The dif-
ference from figure 3.8, where the steady state was not even “in sight” within the
35 year simulation period, are striking. In figure 3.9, 80% of the long-run effect is
reached within 4 years, and the system has reached a new steady state by the end of
the first 10 years of the solution period. The conclusion is that this system is more
convincingly stable than the Phillips curve version of the main-course model. Note
also that the estimated model, which uses real data of the Norwegian economy, has
the same dynamic properties as the calibrated theory model of section 3.2.5.

Economists are known to state that it is necessary to assume a vertical Phillips
curve to ensure dynamic stability of the macroeconomy. In opposition to this view,
the evidence presented here shows not only that the wage price system is stable
when the Phillips curve is substituted by a wage equation which incorporates direct
adjustment also with respect to profitability (consistent with the Norwegian model
and with modern bargaining theory). Quite plainly, the system with the alternative
(equilibrium correcting) wage equation has much more convincing stability proper-
ties than the Phillips curve system.

3.6 The New Keynesian Phillips curve

The New Keynesian Phillips Curve, NPC hereafter, has rapidly gained popularity
and has become an integral part of the New Keynesian Model of monetary policy,
as the aggregate supply equation in that model.

Compared to the models above which addressed wage and price setting jointly,
the theory of the NPC is one-sided it its focus on firms’ price setting. Although this
may seem to be a drawback, it nevertheless explains some of the success of the NPC.
The omission of a theory of trade union behaviour for example makes the NPC fit
like hand in glove into dynamic stochastic equilibrium models (DSGE models) which
assumes that the labour market is perfectly competitive, and that each individual
chooses her own wage in an optimal way. Unemployment is not recognized as an
economic pathology, fluctuations on hours worked being instead interpreted as due
to intertemporal substitution of labour.27 In this respect DSGE models are similar
to the RBC model in chapter 2.8.4.

3.6.1 The ‘pure’ NPC model

Galí and Gertler (1999) gives a formulation of the NPC which is in line with the
model by Calvo (1983) on staggered contracts and rational expectations: They
assume that a representative firm takes account of the expected future path of

27The seminal presentation of the DSGE framework is the paper by Smets and Wouters (2003).
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nominal marginal costs when setting its price, given a probability that the price
thus set “today” will remain fixed for many time periods ahead. This leads to a an
equation of the form

∆pt = bp1Et∆pt+1 + bp2xt + εpt, bp1 > 0, bp2 ≥ 0, (3.55)

where pt denotes the logarithm of a general price index. Note that we make a slight
change in the notation that we have used above, where we distinguished between
product prices in the two sectors of the open economy, and pt denoted the consumer
price index of the open economy.

Et∆pt+1 denotes expected inflation one period ahead conditional upon informa-
tion available at time t. As you may have become accustomed to by now, εpt in
(3.55) denotes a disturbance term. In the NPC in (3.55), xt denotes the logarithm
of the wage share, which Gali and Gertler argue is the best operational measure of
the firm’s real marginal costs which is the theoretical explanatory variable. With
this definition of xt in mind, note that (3.55) can be written as

pt =
1

1 + bp2
(pt−1 + bp1Et∆pt+1) +

bp2
1 + bp2

(wt − at) + εpt

which takes the same general form as the static normal cost pricing model, for
example equation (3.15), but the mark-up coefficient is variable in the NPC model,
and the elasticity with respect to the unit labour costs is less than one.

Although Gali and Gertler prefer the wage-share formulation, it might be noted
that Roberts (1995) has shown that several New Keynesian models have (3.55) as
a common representation, but with different operational measures of xt. Hence, in
the bigger picture, equations using the output gap, the unemployment rate or the
wage share in logs, can all be counted as NPC models of inflation. It is understood
that when the unemployment rate is used, bp2 ≤ 0.

The rationale for the forward-looking term in (3.55) is the assumption of stag-
gered price setting. As mentioned, the assumption is that each price setter knows
that with a high probability, her next opportunity to adjust the price of her firm’s
product lies several periods into the future. Hence it is optimal to take the expected
price changes of other price setters into account. When everybody behaves in this
way at the micro level, the macro outcome is the functional relationship given in
equation (3.55), between the expected rate of change in the price level one period
ahead, and today’s rate of inflation.

The appearance of the forward-looking term Et∆pt+1 has important consequences
for the dynamic stability properties of this model of inflation. To understand
how, replace the expectations term with the actual forward rate, using Et∆pt+1 =
∆pt+1 − ηt+1, where ηt+1 is the expectations error, to obtain

∆pt = bp1∆pt+1 + bp2xt + �p,t (3.56)

where �p,t = εpt− bp1ηt+1 is the joint disturbance term made up of the expectations
error and the inflation surprise term εpt. This equation is very much like an ADL
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model for inflation, for example in the form of the augmented price Phillips curve in
equation (2.23) in section 2.4.2 above. There are two trivial differences of notation:
as πt in (2.23) is replaced by ∆pt in (3.56), and the distributed lag in ut in (2.23) is
replaced by the single explanatory variable xt in the NPC. The essential difference
however is that instead of the lagged inflation term in the augmented Phillips curve,
there is a lead term in the NPC. Nevertheless, in direct parallel to the standard back-
ward looking augmented Phillips curve, equation (3.56) implies a unique solution
for the rate of inflation, as long as we can pin down an initial condition (remember
that this was crucial for the solution also in the ordinary ADL model).

Just as in the case of an ordinary ADL model, the solution is conditional on
the assumptions made about the time series xt and �p,t. In the same way as in
section 2.7.1, assume first that xt is an exogenous variable with known values, and
that the disturbance term �p,t is always zero (i.e., it is replaced by its mean). In
the ordinary ADL case, we found the solution by repeated (backward) substitution,
and an analogous technique works also in this case, but with forward substitution.
Thus, by combining equation (3.56) with the NPC equation for period t+1, namely

∆pt+1 = bp1∆pt+2 + bp2xt+1

we obtain

∆pt = bp1(bp1∆pt+2 + bp2xt+1) + bp2xt

= b2p1∆pt+2 + bp2xt + bp1bp2xt+1

and repeated substitution gives

∆pt = bjp1∆pt+j + bp2

j−1X
i=0

bip1xt+i, j = 1, 2, ..... (3.57)

Based on the assumptions just made, about known x-values in all periods and zero
disturbances in all future periods, (3.57) represents a unique solution for ∆pt as
long as we can fix the value of ∆pt+j , which is often referred to as the terminal
condition. Technically peaking, the terminal condition serves the same purpose
as the initial condition in the case of the ordinary ADL model of section 2.7.1–
namely to secure uniqueness of the solution. However, while knowledge of the initial
condition represents a weak requirement, (it is given from history) there is no way
of knowing the inflation rate far into the future, which is what the requirement of
fixing the value of ∆pt+j amounts to. In general, there is a continuum of solutions to
consider, each solution corresponding to a different value of the terminal condition.

There are two solutions to the non-uniqueness problem. First there are some
cases where a particular terminal condition stands out as more natural or relevant.
An example might be a central bank which has NPC as its model of price setting,
and which runs an inflation targeting monetary policy. For this central bank it
is natural to choose ∆pt+j = π∗ as the terminal condition, where π∗ denotes the
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inflation target. Hence the solution

∆pt = bjp1π
∗ + bp2

j−1X
i=0

bip1xt+i, j = 1, 2, ..... (3.58)

might be said to represent the rate of inflation in the case of a credible inflation
targeting regime, given that the NPC model is the correct model of inflation, and
given that all future x−values are known with certainty.

The other, more general, way around the non-uniqueness problem is to invoke
the asymptotically stable solution. In the ordinary ADL model of section 2.7.1, the
hallmark of the stable solution was that the influence of the initial condition became
negligible as we moved forward in time. In the same manner we note that the role of
the terminal condition in the solution (3.57) is reduced as we let j approach infinity,
subject to the condition that bp1is less than one in absolute value: −1 < bp1 < 1,
the same condition that we saw above applied to the autoregressive coefficient in
the ADL model.

Subject to the stability condition, bjp1 → 0 when j gets infinitively large, and we
can write the asymptotically stable solution as

∆pt = bp2

∞X
i=0

bip1xt+i,

which, subject to the further simplifying assumption of constant xt in all periods
(xt = mx, for all t), can be written as

∆pt =
bp2

1− bp1
mx (3.59)

Note that this solution amounts to using the asymptotic steady state solution for
the inflation rate in period t, and that the distinction between the dynamic solution
and the steady state solution, no longer plays a role in (3.59). This is a consequence
of adopting the asymptotically stable solution to get around the non-uniqueness
problem. In terms of economic interpretation (3.59) is seen to imply that the short-
run effect of a change in xt is the same as the long-run effect: There is no persistence
in inflation adjustment.

3.6.2 A NPC system

Above, when we discussed the main-course model and the ordinary Phillips curve
model, we learned to regard the dynamic behaviour of inflation as a system property,
which depends on the assumptions made about the explanatory variables of the
structural price and wage equations. The analysis of the Phillips curve system in
section 3.3 provides an example.

In the NPC there is only one explanatory variable, namely xt, and the above
solutions for the rate of inflation above are based on exogenous and known xt (for
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all t). More generally, we can formulate a NPC system, consisting of equation (3.56)
and a completing equation for the explanatory variable xt:

xt = bx0 + bx1∆pt−1 + bx2xt−1 + εxt. (3.60)

If xt is the logarithm of wage share, the sign restriction on the ∆pt−1 coefficient is
bx1 ≥ 0, while the case of unemployment is cover by setting bx1 ≤ 0. As for the
autoregressive coefficient we may simplify by only considering non-negative values,
hence 0 ≤ bx2 ≤ 1. Having thus specified a NPC system it is easy to see that solution
(3.57) corresponds to setting bx1 = 0, and assuming that we know the values of bx0
and bx2 as well as all the disturbances εxt. Solution (3.59) adds further assumptions,
namely that bx0 = mx, bx2 = 0 and that all the disturbances are zero.

It is beyond the scope of this book to derive the full solution of the dynamic
system made up of equation (3.56) and (3.60), and interested readers are referred
to Bårdsen et al. (2005a, Ch 7.3) which discusses several possibilities of dynamic
behaviour. Instead, we make use of the method of analysis which we explained in
1.4, namely of (first) considering the stationary solution, assuming that the system
is dynamically stable.

Denote the stationary values of inflation and x by π∗ and x∗ respectively. The
long-run NPC model is thus

(1− bp1)π
∗ − bp2x

∗ = 0

−bx1π∗ + (1− bx2)x
∗ = bx0

and the solution for π∗ is

π∗ =
bp2

(1− bp1)(1− bx2)− bp2bx1
bx0 (3.61)

showing that the steady state rate of inflation depends on coefficients from both the
xt equation, bx1 and bx2, as well as on and the NPC model itself.

The case of exogenous xt is represented by bx1 = 0 and in this case (3.61) can
be written as

π∗ =
bp2

(1− bp1)

bx0
(1− bx2)

. (3.62)

Defining mx = bxo/(1 − bx2) the right hand side can be seen to be identical to
equation (3.59), as we would expect.

In the case of exogenous xt it is always relatively easy to derive the full, dynamic,
solution consistent with rational expectations both with regards to inflation and the
future values of xt. For example, using the exposition in Bårdsen et al. (2005a,
Appendix A.2), we obtain

∆pt =
bp2

(1− bp1bx2)
xt (3.63)

when the disturbance term is ignored (set to zero).28 The solution in (3.63) is
a generalization of equation (3.59) above. When deriving (3.59), the expression
28The derivation is also based on an NPC system where bx0 = 0.
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∞P
i=0

bip1xt+i was simplified by setting each xt+i equal to the constant mean mx. In

(3.63) we have instead set xt = xt, and xt+i = bix2xt for i > 0. This corresponds
to the to the full rational expectations solution, i.e. rational expectation both with
respects to ∆pt+1 and with respect to the future values of marginal costs.

3.6.3 The hybrid NPC model

The ‘pure’ NPC model has been criticized for not being able to explain the observed
inflation persistence. To overcome this problem, a so called hybrid Phillips curve
which allows a subset of firms to have a backward-looking expectations, have been
introduced. The hybrid version of the NPC can be written as

∆pt = bfp1Et∆pt+1 + bbp1∆pt−1 + bp2xt + εpt, (3.64)

where both bfp1 and bbp1 are assumed to be non-negative coefficients. bbp1 represent
the expectations effects that are due to the share of firms who are backward-looking
as in the usual expectations augmented Phillips curve. The lagged inflation term of
the hybrid NPC has consequences for the solution. Heuristically the solution of the
hybrid NPC shows more inflation persistence, and the response to changes in xt will
be less sharp than in the case of the ‘pure’ NPC.

Bårdsen et al. (2005a, Appendix A.2) also give the solution of the rate of inflation
in this case, i.e., when the NPC system is given by (3.64) and (3.60), with bx0 =
bx1 = 0. Ignoring the disturbances the solution is

∆pt = r1∆pt−1 +
bp2

bfp1(r2 − bx2)
xt

where r1 is a coefficient which is less than one in magnitude. r2 is a coefficient which
is larger than one. If bbp1 = 0 it can be shown that r1 = 0 and r2 = 1/bfp1, so the
solution reduces to the simple NPC.

Note the dramatic reduction in the number of explanatory variables compared
to the main-course model in section 3.2.3 above, showing that the NPC model is
basically a single explanatory variable model of inflation. In particular there are no
variables representing open economy aspects in the equations we have presented so
far. This has however been changed by subsequent theoretical developments which
shows that the relative change in the real import prices is a theoretically valid second
explanatory variable in the open economy NPC.

3.6.4 The empirical status of the NPC model

As mentioned above the NPC has made a large impact among macroeconomists. The
gain in currency of the NPC is based on the apparent combination of theoretical
microfoundations with empirical success. For example, using the euro area inflation
data set of Galí et al. (2001), and their estimation methodology, we obtain

∆pt = 0.91
(0.04)

∆pt+1 + 0.09
(0.06)

xt + 0.1
(0.06)

(3.65)
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for a quarterly data set for the period 1971.3 -1998.1, and using the logarithm of the
wage share as x variable. Hence, the estimated value of bp1 in the pure NPC model
for the euro area is 0.914, and the estimated value of bp2 = 0.088. Using the rule-
of-thumb method for testing significance which we explained in section 3.5.1, we see
that the forward-looking term is significantly different form zero, and that the same
conclusion applies to the wage share coefficient. We can also assess the significance
of (bp1 − 1) which is important for the relevance of the forward solution. Since
0.09/0.04 = 2.3 there is statistical support for the claim that, although positive, bp1
is still less than one, so the necessary condition for stability is fulfilled.

For the hybrid NPC, using again the same data and methodology, we obtain

∆pt = 0.68
(0.07)

∆pt+1 + 0.28
(0.07)

∆pt−1 + 0.02
(0.03)

xt + 0.06
(0.12)

. (3.66)

showing that although the lagged inflation rate is a significant explanatory variable
(bbp1 is estimated to be 0.34), the estimated coefficient b

f
p1 of the forward-term is twice

as large. Note however that the bp2 coefficient of the wage share is insignificant, so the
contribution of the economic explanatory variable is dubious in (3.66). Nevertheless,
similar estimation results for the euro area, the US and also for individual countries,
are usually seen as a success for the NPC. A second argument recorded in favour of
the NPC is the seemingly nice fit between the inflation rate predicted by the model
and observed inflation rates. For example, Galí et al. (2001) states that “the NPC
fits Euro data very well, possibly better than US data”.29 Even more recently, Galí
(2003) writes

...while backward looking behaviour is often statistically significant,
it appears to have limited quantitative importance. In other words, while
the baseline pure forward looking model is rejected on statistical grounds,
it is still likely to be a reasonable first approximation to the inflation
dynamics of both Europe and the U.S. (Gali (2003, section 3.1).

Nevertheless, an unconditional declaration of success may still prove to be unwar-
ranted, since goodness of fit–always a weak requirement–is saying very little of
the quality of the NPC as an approximation to the true inflation process.

Figure 3.10 illustrates the point by graphing actual and fitted values of (3.65)
in the first panel–showing a nice fit–and the NPC’s fitted values together with
the fit of a random walk in the scatter plot in the second panel. The similarity
between the two series of fitted values is obvious (a regression line has been added
for readability).

How can it be that the NPC with all its theoretical content fits no better than
a random walk model of inflation, which (as explained in connection with Table 2.3
above) is completely void of economic interpretation? The answer is not difficult
to find if we take a second look at the estimated model in equation (3.65). First,

29The Abstract of Galí et al. (2001).
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Figure 3.10: Actual euro area infaltion and fitted NPC inflation, together with the
fit of a random walk model of euro area inflation.

although formally less than one on a statistical test, the coefficient of ∆pt+1 is so
large that little is lost in terms of fit by re-writing the estimated equation as

∆pt = ∆pt−1 − 0.09xt−1 − 0.1.

Second, the contribution of xt to the NPC fit is actually not very large, because
0.09 is a small number when we take into regard the limited variability of the wage
share. In sum therefore, we should not expect a big difference between the NPC fit
and the fitted values from the random walk model

∆pt = ∆pt−1 + β0 + εt,

which is exactly what figure 3.10 shows.
This argument can be extended to the hybrid NPC. Using the estimation results

of the euro-area hybrid NPC in equation 3.66, the fitted rate of inflation (∆p̂t) is
given by

∆p̂t = 0.09 + 1.06∆pt−1 + 0.41∆
2pt−1 + 0.02xt−1.

Note first, that since the variance of ∆2pt−1 is of a lower order than ∆pt−1, the
sum 1.06∆pt−1 + 0.41∆2pt−1 is dominated by the first factor. Second, since the
coefficient of the forcing variable xt is only 0.02, the variability of xt−1 must be huge
in order to have a notable numerical influence on ∆p̂t. But as xt is the wage share,
its variability is normally limited.
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It is interesting to note that when the NPC is applied to other data sets, i.e., to
such diverse data as US, UK and Norwegian inflation rates, very similar parameter
estimates are obtained, see Bårdsen et al. (2002). Is this a sign of support for the
NPC account of inflation? Proponents of the NPC claim so, but another interpreta-
tion is that the NPC is almost void of explanatory power, and that it only captures
a common feature among different countries data sets, namely autocorrelation.

Hence, the NPC (as an empirical) model fails to corroborate the theoretical
message: that rational expectations transmits the movements of the forcing variable
strongly onto the observed rate of inflation. Recently, it has been shown by ? that
the typical NPC fails to deliver the expected result that inflation persistence is ‘in-
herited’ from the persistence of the forcing variable. Instead, the derived inflation
persistence, using estimated NPCs, turns out to be completely dominated by ‘in-
trinsic’ persistence (due to the accumulation of disturbances of the NPC equation).
Quite contrary to the consensus view, Fuhrer shows that the NPC fails to explain
actual inflation persistence by the persistence that inflation inherits from the forcing
variable. Fuhrer summarizes that the lagged inflation rate is not a ‘second order add
on to the underlying optimizing behaviour of price setting firms, it is the model’.

More evaluation of the NPC is provided by e.g., Bårdsen et al. (2004) and Bård-
sen et al. (2005a, Ch. 7) which also include testing of parameter stability (over
sample periods), sensitivity (with respect to estimation methodology), robustness
(e.g., inclusion of a variable such as the output-gap in the model) and encompass-
ing (explaining preexisting models.30 Expect for recursive stability, the results are
disheartening for those who believe that the NPC represents a data coherent and
theory driven model of price setting. As for recursive stability, it is more apparent
than real since the inherent fit of the model is so poor that statistical stability tests
have low power , and graphs of the sequence of recursive coefficient estimates of the
forcing variable show ‘stability around zero’. Even more fundamentally, there is a
growing recognition the NPC model fails on an econometric property called identifi-
cation.31 Models with weak or no identification are usually met with suspicion from
all quarters of the economics discipline, but so far the popularity of the NPC has
been unscatched by such criticism.

Hence, after evaluation, the economic interpretation of estimated NPC models
‘disappears out of the window’ leaving a huge question mark hovering also over the
empirical status of New Keynesian DSGE models, of which the DSGE is an integral
part. Despite its initial promises, the NPC modelling approach thus seems to be
heading towards a failure. One moment’s thought suffice to make us recognize that
this may not a surprise. The NPC offers a single variable explanation of inflation,
which by all other accounts a complex socio-economic phenomenon, and it is more
than plausible that a satisfactory inflation model will contain more than one ex-
planatory variable. As we have seen, this insight was present already in the 1960s,
and it has been developed further down the decades in theoretical and empirical

30See also Bårdsen et al. (2002) which includes Norwegian data.
31See Mavroeidis (2005).
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models that take account the multi-faceted nature of inflation as a socio-economic
phenomena.

That no empirically valid “single cause” explanation of inflation can be provided
for any developed economy is a lesson forgotten by the proponents of the NPC
model. That said, although the NPC models as they stand, are unsuited for policy
related economic analysis, this does not preclude that forward-looking expectations
terms could play a role in explaining inflation dynamics within other, statistically
well specified, models, for example of the equilibrium correction type.

Exercises

1. Is β22 > 0 in (3.16) a necessary and/or sufficient condition for path b to occur
in figure 3.2?

2. What might be the economic interpretation of having β21 < 0 , but β22 > 0?

3. Assume that β21 + β22 = 0. Try to sketch the wage dynamics (in other words
the dynamic multipliers) following a rise in unemployment in this case!

4. In section 3.3, the expression for the natural rate was found after first estab-
lishing the steady state solution for the system. To establish the natural rate
of unemployment more directly, rewrite (3.44) as

∆wt = βw1∆mct + βw2(ut −
βw0
−βw2

) + εw,t, (3.67)

and then the steady state situation: ∆w−gmc = 0, εw,t = 0. Show that (3.67)
defines uphil as

0 = βw2[u
phil − βw0

−βw2
] + (βw1 − 1)gmc.

5. Use the expressions for the wage and price curves in section 3.2.7 to derive the
algebraic expression for uw in figure 3.5.

6. The solution method used for the ‘pure’ NPC on equation (3.56) was based on
forward repeated substitution. Section 2.7.1 showed that the ordinary ADL is
solved by backward substitution. Why does not backward substitution work
for the NPC?

Hint: The answer has to do with stability. To see why, note that (3.56) can
be re-normalized on ∆pt+1 :

∆pt+1 = (1/bp1)∆pt − (bp2/bp1)xt − (1/bp1)�p,t
or

∆pt = (1/bp1)∆pt−1 − (bp2/bp1)xt−1 − (1/bp1)�p,t−1 (3.68)

i.e., an ADL model (albeit with no contemporaneous effect of and the distur-
bance term is lagged). Show that repeated backward substitution using (3.68)
gives an unstable solution if 0 < bp1 < 1, confer section 2.7.1 if necessary.
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7. Note that in equation (3.58), giving the solution of the rate of inflation when
the inflation target is used as a terminal condition, the number of periods ahead
j, is a parameter to be determined. With reference to contemporary inflation
targeting, and taking the time period to be annual, it is reasonable to set
j = 3. If we assume that the two parameters are known numbers, for example
bp1 = 0.9 and bp2 = 0.1, the inflation rate of period t can be determined using
π∗ = 0025 and xt = ln(0.5), xt+1 = ln(0.55), and xt+2 = ln(0.65). Work out
∆pt, using these numbers in equation (3.58). How is the solution affected if
all three wage shares are 10 percentage points lower?

8. Compare the asymptotically stable solution in equation (3.59) with the stable
long-run solution (2.41) of the ADL model in section 2.7.1. What seems to be
the consequence of forward-looking terms for the stable solution of dynamic
relationships in economics?

9. Consider the NPC estimated on quarterly Norwegian data:32

∆pt = 1.06
(0.11)

∆pt+1 + 0.01
(0.02)

xt + 0.04
(0.02)

∆pbt + dummies

Inflation is measured by the quarterly change in the official Norwegian con-
sumer price index. Because of the openness of the economy, the specification
has been augmented heuristically with import price growth (∆pbt) and dum-
mies for seasonal effects as well as the special events in the economy described
in Bårdsen et al. (2002). The estimation period is 1972.4 - 2001.1. xt is
the logarithm of the wage share (total economy minus North-Sea oil and gas
production).

Compare this equation with the euro area results.

10. Tveter (2005) estimates a NPC for Norway, explaining the domestic part of
the consumer price index. The sample is 1980.1-2003.3 The xt is defined in
the same way as in the equation in exercise 8. For the pure NPC, Tveter
reports

∆pt = 0.95
(0.04)

∆pt+1 − 0.001
(0.001)

xt,

and for the hybrid model

∆pt = 0.645
(0.13)

∆pt+1 + 0.31
(0.12)

∆pt−1 − 0.001
(0.001)

xt.

Take notes on the similarities between these results and the euro area results
in the main text.

32 , see Appendix B.
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Appendix A

Variables and relationships in
logs

Logarithmic tranformations of economic variables are used several times in the text,
first in section 2.2. Logarithms possess some properties that aid the formulation of
economic relationships (model building), and the visual inspection of model and data
properties in graphs. This appendix reviews some key properties of the logarithmic
function, and the characteristic of graphs.

Throughout we make us of logarithms to the base of Euler’s number e ≡ 2.171828....,
and we use the symbol ln for these natural logarithms. In general, the natural log-
arithm of a number or variable x is the power to which e must be raised to yield a,
i.e., elna = a.

For reference, we put down the main rules for operating on the natural logarith-
mic function (both x and y are positive):

ln(xy) = lnx+ ln y (A.1)

ln(
x

y
) = lnx− ln y (A.2)

lnxa = a lnx, a is any number or variable (A.3)

From these basic rules, additional ones can be constructed. For example

ln(xayb) = a lnx+ b ln y

which is often called a linear combination of the log transformed variables, with
weights a and b. In the main text, a prime example of a linear combination is
the stylized definitional equation for the log of the consumer price index, see e.g.
equation (??). In that equation the weights sum to one, corresponding to b = 1−a.
Another example of a linear combination is the weighted geometric average:

ln((xy)1/2) = 0.5(ln(x) + ln(y))
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or, in general, with n different x-es:

ln((x1x2...xn)
1/n) =

1

n

nX
i=1

≡ 1

n
(lnx1 + lnx2 + ...+ lnxn).

Assume next that y is a is function f(x). The relationship is linear if f(x) = a+ bx.
A much used non-linear specification of f(x) is

y = Axb, x > 0 (A.4)

where A and b are constant coefficients. Note first that if we apply the definition of
the elasticity

Elxy = f 0(x)
x

y

to (A.4), we obtain

Elxy = b (A.5)

showing that the coefficient b is the elasticity of y with respect to x. Second, if
we apply the rules for logarithm to (A.4) the following log-linear relationship is
obtained:

ln y = lnA+ b ln(x), x is positive. (A.6)

The equation is linear in the logs of the variables, a property which is well captured
by the name log-linear. Conveniently, the elasticity b is the slope coefficient of the
relationship. This is confirmed by taking the differential of (A.6):

d ln y

d lnx
= b.

Drawing the graph of (A.4) is not easy, since the slope is different for each value of
x. Panel a) of Figure A.1 shows a graph for the case of A = 0.75 and b = 0.5, while
panel b) shows the corresponding graph for ln y and lnx. Clearly, the slope in panel
b) is constant at all values of lnx, and is equal to 0.5.
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y

x

ln
 y

ln x

Figure A.1: Upper panel: The graph of the function y = Axb when A = 0.75,
b = 0.5 and x is a variable with average growth rate 0.03. Bottom panel: The graph
og ln y = lnA+ b lnx .

The growth rate of a time series variable xt over its previous value xt−1 is (xt −
xt−1)/xt−1, or using the difference operator explained in the main text: ∆xt/xt−1.
Of course, percentage growth is a hundred times the growth rate, 100∆xt/xt−1.
These are exact computations. Taking the log of variables provides a short-cut
to growth rates. To understand why, consider first the following expansion of the
change in the log of yt on its previous value:

∆ lnxt ≡ lnxt − lnxt−1
= ln(

xt
xt−1

) = ln(
xt
xt−1

+ 1− 1)

= ln(1 +
xt − xt−1
xt−1

)

Hence the change in log x is equal to “log of 1 plus the growth rate of x”. What
is so great about this? At first sight we may seem to be stuck, since we know that
for example that ln(1 + (xt − xt−1)/xt−1) 6= ln(1) + ln((xt − xt−1)/xt−1). However,
there is a rule saying that as (a first order approximation) the natural logarithm of
one plus a small number is equal that small number itself. This is exactly what we
need, since it allows us to write

∆ lnxt ≈
xt − xt−1
xt−1

, when − 1 < xt − xt−1
xt−1

< 1 (A.7)
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showing that the difference of the log transformed variable is approximately equal
to the growth rate of the original variable. Figure A.2 shows an example of how
well the approximation works. The graph in panel a) shows 200 observations of a
time series with a growth rate of 3%. In fact this is the same series as we used
to represent the x−variable in Figure A.1. The graph is not completely smooth,
since for realism, we have added a random shock to each observation (a stochastic
disturbance term). This means that even using the exact computation, each growth
rate is likely to be different from 0.03. This is illustrated in panel b) showing the
exact periodic growth rates. Evidently, there is a lot of variation around the mean
growth rate of 0.03. Panel c), with the graph of lnxt shows a linear though not
completely deterministic evolution through time. The straight line represents the
underlying average growth of rat of 0.03.
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Figure A.2: Panel a): The graph of a time series xt with an average growth rate of
0.03. Panel b) The time series of the exact growth rates of xt. Panel c): the graph
of lnxt. Panel c): The scatter plot of the exact and approximate growth rates. The
approximate growth rates is computed as ∆lnxt

Finally, panel d) in the figure shows the scatter plot of the exact growth rate
against the approximated growth rate based the differenced log transformed series in
panel c). To the eye at least, the vast majority to observations lies spot on the drawn
least squares regression line, which is evidenced that the approximation works really
well. However, there is indication that for more sizable growth rates, for example
above 10%, the difference between exact and the approximate computation begin to
be of practical interest.

The examples considered so far have used computer generated numbers. Figure
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A.3 shows the actual and log transformed series of a credit indicator for Norway.
Unlike the stylized properties shown in Figure A.1 and A.2, the real world series
in this graph shows a more mixed picture. For example, the upper panel suggests
two periods of exponential growth in credit: the first ending in 1989 and the second
one beginning in 1994. In between lies the period of falling housing prices and the
biggest banking crisis since the 1920s. Despite the smoothing function of the log-
transform the burst of the bubble is still evident in the bottom panel. Outside the
burst period, the linearization works rather well.
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Figure A.3: Upper panel: The time graph of the total credit issued in Norway,
together with the estimated linear trend, Bottom panel: The time graph of the
logarithmic transform of the credit series. Source: Norges Bank, RIMINI database.

Figure A.4 shows annual data of Norwegian real GDP for the period 1865-1999.
Panel a) shows the fixed price series in million kroner, 1990 is the base year. The
break in series is due to 2WW, when the country was occupied. Over such a long
period of time, the exponential growth pattern is visible and the log transform (panel
b) therefore shows a much more linear relationship. In the panel c) and d), the exact
and approximate growth rates are shown.
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Figure A.4: Panel a: The time graph of Norwegian real GDP, in million1990 kroner.
Panel b) The natural logarithm og GDP. Panel c) The exact growth rate of GDP.
Panel d) The approximate growth rate using ∆lnGDPt. Source: Statistics Norway.

References All the formulae in this appendix are standard and can be found
in any textbook in mathematical analysis. For example, in Sydsæter (2000), the
logarithmic function is presented in chapter 3.10 and rules for derivation in chapter
5.11. Elasticities are found in chapter 5.12. The approximation used in equation
(A.7) is discussed on page 253 of Sydsæter (2000). A good reference in English is
Sydsæter and Hammond (2002).



Appendix B

Linearization of the Solow
model

In chapter 2.8.3 we derived the well known dynamic equation (2.59) for the capital
intensity variable kt:

kt =
1

(1 + n)

©
(1− δ)kt−1 + s kγt−1

ª
which is non-linear because of the last term inside the brackets. With the aid of a first
order Taylor expansion, see for example Sydsæter and Berck (2006, p. 50), of that
term we obtain a linearization of the whole expression which gives the approximate
dynamics of kt “in the neighbourhood” of the steady state k̄.

Define the function
f(kt−1) = s kγt−1.

The first order Taylor expansion around the steady-state gives

f(kt−1) ≈ f(k̄) + f 0(k̄)(kt−1 − k̄) (B.1)

= s k̄γ + γsk̄γ−1(kt−1 − k̄)

Replacing s kγt−1 in (2.59) by the expression in the second line in (B.1), and collecting
terms, gives (2.62) in the main text.
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